
Asrael Documentation

Alexander Pagonis (0931058)

Graz, May 7, 2016

1

Contents

Contents

1 Universal Behaviour 4
1.1 Loading Levels . 4

2 Kitchen 4
2.1 General Information . 4
2.2 Defining Portable Objects . 5

2.2.1 Object Names . 5
2.2.2 Available Classes . 5
2.2.3 Available Disposals . 6

2.3 Openables . 11
2.4 Switchables . 12
2.5 Commands . 12

2.5.1 Available IDs . 14

3 Wumpus 15
3.1 General Information . 15
3.2 Defining Levels . 15
3.3 Commands . 15

4 Labyrinth 19
4.1 General Information . 19
4.2 ”Gameplay” . 19
4.3 Defining Levels . 19

4.3.1 Tile IDs . 20
4.3.2 Identifying the Walls of the Tiles 20
4.3.3 Available Wall Properties . 20
4.3.4 Example Level Definition . 21

2

List of Figures

List of Figures

1 Overview kitchen unit . 6
2 Overview table . 7
3 Wumpus example level . 16
4 Labyrinth example level . 21

3

1 Universal Behaviour

1 Universal Behaviour

This section briefly covers the behaviour of the simulator, that is equivalent in every
simulations (Kitchen, Wumpus and Labyrinth).

1.1 Loading Levels

Every simulation starts with an empty world. The world is then customised during the
initialisation phase. For this there are distinct Folders in the data folder of the deliv-
erables (Windows and Linux) or within the Mac binary package. Within these folders,
the user may define levels in simple plaintext-files. For the Kitchen, the folder is called
”KitchenSettings”. The Wumpus Simulator loads levels form the ”WumpusLevels”
file and the Labyrinth Simulator from the ”LabyrinthLevels” folder. The user may
define as many levels as desired. The simulator will then choose one level randomly by
default. If the user wants a specific level to be loaded, the name of the desired level
has to be entered in the ”level.config” file, in the same folder. If this file is empty,
random levels will be loaded. Additionally, there is a ”quality.config” file, which may
be used to define the graphical appearance of the simulator. It is also just a plaintext
file that only includes a number from 0 to 5. Here 0 is the weakest graphic setting, which
should run smoothly on weak hardware. If the quality level is set to 5 the simulator will
feature dynamic shadows, high resolution textures and other stuff that is not necessary
for the simulation to work, but improves the graphical appearance. The Kitchen and
Labyrinth also feature feedback to the user if the configuration is invalid or ambigu-
ous. For the Kitchen, every move if logged in the ”log.out” file. The Labyrinth will
only inform the user about invalid or ambiguous configuration settings in the ”com-
pilation warnings.out” file. Due to the simplicity of the config files in the rumpus
simulation, a log file is not created. Problems will be communicated to the user within
the XML-Feedback only.

2 Kitchen

2.1 General Information

The Kitchen scene features a static base environment with a kitchen unit and a table.
This static environment includes pre-specified disposals, that can be used to place objects
on them. The base environment does not feature any portable objects, that can be
manipulated by the robot. These objects are loaded from txt-files when the scene is
initialised. These portable objects (spoons, plates, pans...) may again have disposals in
order to allow them to be stacked onto each other. Objects can have only one, many or
no disposal. These disposals also have a temperature. When now an object is placed
onto the disposal, it will adopt its temperature. When the objects is being carried by
the robot, it will adopt to the rooms temperature, which is set to 20◦C.

4

2 Kitchen

2.2 Defining Portable Objects

This section will explain how to customise the kitchen scene with portable objects.
Portable objects can be defined in txt-Files within the ”KitchenLevels”-Folder. This
way, the user can place objects of predefined classes with a self-chosen name, on specific
locations within the scene. There is no limit to how many objects the user can define.

Following syntax applies for the level config files, shown on a example:

• po>LargePot1;LargePot;Cabinet5 Top;0

po>: Command (”place object”)

LargePot1: Name of new object to be placed

LargePot: Class of object to be placed

Cabinet5 Top: Disposal, where to place object

0: specific position on disposal, where to place (This attribute is optional.
When not given, the first free position will be used)

2.2.1 Object Names

The chosen name can be any arbitrary UNIQUE identifier. Objects with identifiers
that are already used will be ignored. For that reason, a log is created within the
”KitchenLevels” folder to keep track of any problems and decisions taken for the user.

2.2.2 Available Classes

There are a few classes of placeable objects to choose from. These objects are all portable
(can be carried by the robot) and may or may not also have a disposal (disposals are
places where other objects can be placed on). Following classes exist:

• Plates

BeigePlate

BrownPlate

GreenPlate

• Food

Bread

Cheese

Ham

Tomatoes

• Silverware

Fork

5

2 Kitchen

Knife

LargePot

Spoon

• Kitchen Utils

Pan

SmallPot

WoodenBowl

2.2.3 Available Disposals

There are many static disposals placed all over the scene. Most of the objects loaded
from the txt-file also include a disposal. A scene overview is given in figure 1.

Figure 1: Overview kitchen unit

In addition, an overview over the tables disposals, including the available positions, is
depicted in figure 2.

Bigger disposals like a long shelf, which has enough space to hold more than one object
have multiple positions. Therefore, to identify an exact disposal position, the disposal
can be followed by a number (eg. ”;0”). This number denotes, where exactly the object
is to be placed. Following disposals are available (the number in brackets denotes the
amount of positions):

• Shelfs

Shelf0

Shelf0 0

Shelf0 1

6

2 Kitchen

Figure 2: Overview table

Shelf0 2

Shelf0 3

Shelf0 4

Shelf0 5

Shelf0 Top

Shelf1

Shelf1 0

Shelf1 1

Shelf1 Top

Shelf2

Shelf2 0

Shelf2 1

7

2 Kitchen

Shelf2 2

Shelf2 3

Shelf2 Top

Shelf3

Shelf3 0

Shelf3 1

Shelf3 2

Shelf3 3

Shelf3 Top

• Cabinets

Cabinet0

Cabinet0 0

Cabinet0 1

Cabinet0 2

Cabinet0 Top

Cabinet0 Drawer0 Bottom (4x)

Cabinet1

Cabinet1 Drawer0 Bottom (4x)

Cabinet1 Drawer1 Bottom (4x)

Cabinet1 Top

Cabinet2

Cabinet2 0

Cabinet2 1

Cabinet2 2

Cabinet2 3

Cabinet2 Top

Cabinet3

Cabinet3 0 (2x)

Cabinet3 1 (2x)

Cabinet3 2 (2x)

Cabinet3 3 (2x)

Cabinet3 Top (2x)

Cabinet4

8

2 Kitchen

Cabinet4 Drawer0 Bottom (4x)

Cabinet4 Drawer1 Bottom (4x)

Cabinet4 Drawer2 Bottom (4x)

Cabinet4 Drawer3 Bottom (4x)

Cabinet4 Top

Cabinet5

Cabinet5 0

Cabinet5 1

Cabinet5 2

Cabinet5 Top

Cabinet6

Cabinet6 Drawer0 Bottom (4x)

Cabinet6 Drawer1 Bottom (4x)

Cabinet6 Drawer2 Bottom (4x)

Cabinet6 Drawer3 Bottom (4x)

Cabinet6 Top

Cabinet7

Cabinet7 Drawer0 Bottom (4x)

Cabinet7 Drawer1 Bottom (4x)

Cabinet7 Drawer2 Bottom (4x)

Cabinet7 Drawer3 Bottom (4x)

Cabinet7 Drawer4 Bottom (4x)

Cabinet7 Top

Cabinet8

Cabinet8 Drawer0 Bottom (4x)

Cabinet8 Drawer1 Bottom (4x)

Cabinet8 Drawer2 Bottom (4x)

Cabinet8 Drawer3 Bottom (4x)

Cabinet8 Drawer4 Bottom (4x)

Cabinet8 Top

Cabinet9

Cabinet9 0

Cabinet9 1

9

2 Kitchen

Cabinet9 Top

Cabinet10

Cabinet10 0 (2x)

Cabinet10 1 (2x)

Cabinet10 Top (2x)

Cabinet11

Cabinet11 0

Cabinet11 1

Cabinet11 2

Cabinet11 3

Cabinet11 Top

Cabinet12

Cabinet12 0 (2x)

Cabinet12 1 (2x)

Cabinet12 2 (2x)

Cabinet12 3 (2x)

Cabinet12 Top (2x)

• Placemats

Placemat1 (4x)

Placemat2 (4x)

Placemat3 (4x)

Placemat4 (4x)

• Appliances

Microwave

Microwave Base

Oven

Oven Grill0 (4x) [On Top...]

Oven Grill1 [Inside...]

Dishwasher

Dishwasher Base

Fridge

Fridge 0 (2x)

Fridge 1 (2x)

10

2 Kitchen

• Misc

Any Plate, Pan, Food where it makes sense

2.3 Openables

A few cabinets have doors or drawers, that can break the line of sight between the robot
and the objects inside them. In order make them visible for the robot, it has to open
them. The openable objects are:

• Cabinets

Cabinet0 Drawer0

Cabinet0 Door0

Cabinet2 Door0

Cabinet3 Door0

Cabinet3 Door1

Cabinet1 Drawer0

Cabinet1 Drawer1

Cabinet4 Drawer0

Cabinet4 Drawer1

Cabinet4 Drawer2

Cabinet4 Drawer3

Cabinet5 Door0

Cabinet5 Door1

Cabinet6 Drawer0

Cabinet6 Drawer1

Cabinet6 Drawer2

Cabinet6 Drawer3

Cabinet7 Drawer0

Cabinet7 Drawer1

Cabinet7 Drawer2

Cabinet7 Drawer3

Cabinet7 Drawer4

Cabinet8 Drawer0

Cabinet8 Drawer1

Cabinet8 Drawer2

11

2 Kitchen

Cabinet8 Drawer3

Cabinet8 Drawer4

Cabinet9 Door0

Cabinet10 Door0

Cabinet10 Door1

Cabinet11 Door0

Cabinet12 Door0

Cabinet12 Door1

• Misc

Fridge Door

Oven Door

Microwave Door

Dishwasher Door

2.4 Switchables

Switchables are objects that can be turned on and off. In the simulator, they are used
to enable heating capability of the Oven and the microwave. Therefore the switchable
objects are:

• Oven

• Microwave

2.5 Commands

Following XML-Commands are available:

• ”God”,”LoadLevel”,”KitchenBlank”

use: loads the kitchen level

note: This will load the kitchen with random settings, unless distinct level is
defined in ”level.config” file

• ”Gargamel”,”Move”,[id]

use: Move to object with given id (id...string)

note: The id is a string, that denotes the na,e of the game object in the scene
(e.g.: Fork1)

12

2 Kitchen

• ”Gargamel”,”Open”,[id]

use: Open object with given id

note: Can only be applied to openable objects!

• ”Gargamel”,”Close”,[id]

use: Close object with given id

note: Can only be applied to openable objects!

• ”Gargamel”,”Take”,[id]

use: Take object with given id

note: Can only be applied portable objects (e.g.: Pans, pots, forks...)

• ”Gargamel”,”Put”,[id]

use: Put object to disposal with given id

note: The id is again a string, that contains the name of the desired object.
This Command will only work for objects with disposals, that are not occupied
yet.

• ”Gargamel”,”TurnOn”,[id]

use: Turn On object with given id

note: Only works with switchables

• ”Gargamel”,”TurnOff”,[id]

use: Turn Off object with given id

note: Only works with switchables

• ”Gargamel”,”IsAt”,[id]

use: Returns true when Gargamel is at given id

• ”Gargamel”,”See”,[id]

use: Returns true when Gargamel sees the object, denoted by a given id

• ”Gargamel”,”Hot”,[id]

use: Returns true when the given object is hot (>100 degree)

13

2 Kitchen

2.5.1 Available IDs

The ids that can be used to identify targets for specific commands, are strings that
describe the target object. Note, that an object can have multiple ids, that describe it’s
sub-components. For instance, Cabinet0, features a door and drawers, as well as a shelf
space on top. Therefore it features following ids:

• shelfs

Cabinet0 0

Cabinet0 1

Cabinet0 2

Cabinet0 Top

Cabinet0 Drawer0 Bottom (4x)

• openables

Cabinet0 Drawer0

Cabinet0 Door0

All of these ids may be used anytime. Some commands however, may not work on
every id. The See Command for instance will always deliver a result, as long as the id
is valid. A TurnOff or TurnOn Command however will always fail on every object that
is not switchable. The Move Command will always approach the position of the given
id. Therefore, it makes no difference wether the robot is told to move to id ”Cabinet0”
or ”Cabinet0 Door0”, as long as the see command succeeds for both ids.

14

3 Wumpus

3 Wumpus

3.1 General Information

Without the config files the Wumpus Scene is completely empty. The user has to define
the shape of the level, as well as the position of the traps, Wumpus and the gold.
Once the level has been loaded, the character can be controlled using XML-RPCs. Also
information about the games state and score can be prompted any time, using the
commands explained in the command section 3.3.

3.2 Defining Levels

Defining levels is very easy. Following Syntax applies:

• H ... Hole

• G ... Gold

• W ... Wumpus

• # ... Empty tile

An example file would look like this:

#######

###W#H#

#######

####G##

##H####

Note: The position of the player is always on the bottom left tile. Therefore make
sure to always leave it empty (”#”). The output of the file from above is depicted in
figure 3. The geometry of the levels has to be a square. This means that the length of
the lines and columns have to be equal!

3.3 Commands

Following XML-Commands are available:

• ”God”,”LoadLevel”,”Wumpus”

use: loads the level

returns:

true: on success

false: on fail

15

3 Wumpus

Figure 3: Wumpus example level

• ”God”,”wumpusState”

use: returns the current game state (running/won/lost)

returns:

2: won

3: lost

4: running

• ”God”,”wumpusScore”

use: returns the current game score

returns:

1: always and score in string

• ”Player”,”turnLeft”

use: player character turns left

returns:

true: always (never fails)

• ”Player”,”turnRight”

use: player character turns right

returns:

true: always (never fails)

16

3 Wumpus

• ”Player”,”move”

use: player character moves ahead

returns:

true: when player moved to next tile

false: when player could not move (hit the wall)

• ”Player”,”shoot”

use: player character shoots an arrow

returns:

true: when player shot the arrow

false: when player had no arrows left to shoot

• ”Player”,”senseWumpus”

use: returns true if wumpus is close

returns:

true: when player is next to the wumpus tile and wumpus is still alive

false: when player is not next to the wumpus tile or wumpus is dead

• ”Player”,”senseHole”

use: returns true if hole is close

returns:

true: when player is next to a hole tile

false: when player is not next to a hole tile

• ”Player”,”senseGold”

use: used to check wether the player is on the gold tile

returns:

true: when player is on the gold tile

false: when player is not on the gold tile or already carries the gold

• ”Player”,”takeGold”

use: used to pick up the gold when on the gold tile

returns:

true: when player is on the gold tile and picked up the gold

false: when player is not on the gold tile or already carries the gold

17

3 Wumpus

• ”Player”,”climb”

use: used to escape the dungeon with the gold

returns:

true: when player has the gold and is on the entry tile

false: when player is not on the entry tile or does not carry the gold when
on the entry tile

• ”Player”,”hear”

use: sense whether the wumpus was killed

returns:

true: only immediately after the wumpus was shot

false: if there was another action between the shoot and the hear command
or if the wumpus was not shot

18

4 Labyrinth

4 Labyrinth

4.1 General Information

Just like the Wumpus simulation, the labyrinth simulation starts with an empty world.
The user has to define the geometry of the labyrinth and the properties of the walls in
two separate files.

4.2 ”Gameplay”

The robot is placed somewhere in a labyrinth. It has the quest to correctly identify
casualties that are placed in it. To identify casualties, it can sense heat and color of
walls. If a wall has color AND heat coming from it, it holds a casualty. If not both of
these criteria are met, it is not a casualty. When the robot thinks it has found a casualty,
it can report it. When correctly reporting casualties, the player gets some points. For
wrongly reported casualties, points are deducted. The robot only gets a certain period of
time for exploring the labyrinth. When the time is over, it cannot be controlled anymore.
Also it has the possibility to escape the labyrinth. If the robot explores the labyrinth
and manages to find its way back to the entry point (color encoded: green tile) and
escape, it is rewarded with a higher score.

4.3 Defining Levels

The geometry can be defined similar to the wumpus case. It is stored in the txt-file and
follows the syntax:

• # ... Tiles to move on

• 0 ... No Tile (hole)

• N,E,S,W ... Tile including the robots starting position and rotation (North / East
/ South / West)

Additionally another File (extension: *.prop) has to be provided including the prop-
erties of the tiles. This file has to has the same name as the txt-File. For example: The
level 1 consists of the files:

• 1.txt

• 1.prop

The prop-File follows the syntax: [target]>[Settings1],[Settings2],....
Following adjustments are possible (shown by examples):

• define game parameters:

example: points report>15

19

4 Labyrinth

use: points for correctly reporting casualties (15 in this example)

example: points leave>30

use: points for leaving the arena (30 in this example)

example: casualty color>255;0;0

use: color for casualties r;g;b (red in this example)

example: max time>120

use: The time (in seconds) the robot has for exploring the labyrinth

• define tile properties (follows the syntax: [tile id]>[Wall]:[Property])

example: 16>S:W,S:C

Tile id: number of tile (16 in this example)

Wall: desired wall (N/E/S/W) (South Wall in this example)

Property: W (Warm),C (Colored) or E (Empty) (Warm and Color)

meaning: This means that the south wall of tile number 16 should be warm
and have casualty color (so it holds a casualty)

4.3.1 Tile IDs

The tile-id is an implicit parameter that is calculated from the levels txt-file. The tiles
are automatically numbered, starting with 0 and incrementing from left to right, top to
bottom.

4.3.2 Identifying the Walls of the Tiles

Every tile has 4 walls. The walls are identified by their cardinal directions, relative to
the txt-file. This means that the north wall (N) of a tile, will always be the wall on the
top.

4.3.3 Available Wall Properties

Every wall of a tile may have different properties. Following properties are available:

• W ... Warm

• C ... Color

• E ... Enabled

Giving a wall the properties Warm AND Color implicitly denotes a casualty. The ”En-
abled” property is necessary because the simulator automatically removes Walls
between adjacent tiles, unless they are marked as Warm, Colored or Enabled.

20

4 Labyrinth

4.3.4 Example Level Definition

Following example should make it more clear. The following txt-file:

#00000

##0000

###00#

00#00#

E#####

#0#00#

combined with this prop-file:

points_report >15

points_leave >30

casualty_color >255;100;100

max_time >120

0>N:W

1>E:E

2>W:C

6>N:C,N:W,W:C

16>S:W,S:C

Creates the level, depicted in 4

Figure 4: Labyrinth example level

21

	Universal Behaviour
	Loading Levels

	Kitchen
	General Information
	Defining Portable Objects
	Object Names
	Available Classes
	Available Disposals

	Openables
	Switchables
	Commands
	Available IDs

	Wumpus
	General Information
	Defining Levels
	Commands

	Labyrinth
	General Information
	''Gameplay''
	Defining Levels
	Tile IDs
	Identifying the Walls of the Tiles
	Available Wall Properties
	Example Level Definition

