
Improvement and Extension of YAGI, a
Golog Based Programming Language for
Planning and Real-Time Interaction in

Robotics

Thomas Eckstein

Bachelor Thesis

Supervisor
Assoc.Prof. Dipl.-Ing. Dr.techn. Gerald Steinbauer

submitted to
Graz University of Technology
Institute for Software Technology

Graz, July 2019



Abstract

YAGI is a declarative and prodedural programming language based on Situation Calculus and
Golog. The language allows the user to model the target domain as a set of actions, fluents and
procedures or as a planning goal. Its online execution mode allows for real-time control of an au-
tonomous agent by sending signals or by reading sensor data. This paper is based on a previous
version of YAGI, which has major drawbacks such as low performance or a limited syntax. We
propose improvements and redesign the language syntax along with a brand new, more performant
interpreter. Additionally, we relate the semantics of our language to Second Order Logic. Moreover,
we benchmark our implementation through some famous planning problems and show that it per-
forms several magnitudes better than the previous version regarding runtime and efficiency. YAGI
has also been tried by university students in the course ”Classical Topics of Computer Science” with
positive results. Our implementation can be found online in the repository linked below.1

1https://git.ist.tugraz.at/ais/yagi/tree/eckstein/rewrite/
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1 Introduction

High level control in robotics has always been a great challenge due to its complexity and difficulties
in formalization. In domains such as traffic control, assembly lines or packet delivery there is tons of
live information coming into the control system: Locations of packets or parts, locations of agents and
vehicles or requests with different priorities. The control system has to make a plan based on this
information and output a short as possible sequence of actions to fulfill the planning goal. But as soon
as a few actions are executed in the real world, things may go wrong very quickly: Vehicles get stuck in
traffic, a component stops working, new requests arrive or priorities change. With such a vast range of
requirements, how can one develop a swiss army knife to model and solve such problems?

One early approach to formalize such problems was made by [McCarthy, 1963] through Situation Calcu-
lus, a formal framework in Second Order Logic to reason about actions and their effects. Golog, which
was proposed by [Levesque et al., 1994] extends Situation Calculus by providing control structures that
allow action based planning. Golog based interpreters, such as ConGolog [De Giacomo et al., 2000] were
implemented in the logical programming language Prolog. In addition to those, [Maier, 2015] designed
the Golog based language YAGI and implemented an accompanying standalone interpreter. He set focus
on giving a clear language definition and on cleanly separating front-end and back-end. YAGI is still
considered to be in the early alpha-stage. While the interpreter has serious performance issues, the lan-
guage lacks basic data types, syntactic sugar and a typechecker. [Maier, 2015] has come to the conclusion
that his implementation can solve some problems with higher reliability than traditional Prolog based
Golog, but is slower by several magnitudes.

Our goal is to improve and extend the YAGI ecosystem and to show the effectiveness of our modifications.
At first we want to examine the weaknesses of the existing YAGI version in order to get ideas on what
to improve. The language needs a more compact syntax with more features and data types. Usability is
another important issue, because the programmer needs to get better syntax and type errors at compile
time. We want to ensure that our language is still in compliance with the theoretical background provided
by Situation Calculus and Golog by mapping each YAGI construct to a logical sentence. Subsequently
we want to reimplement the interpreter from scratch to combat performance issues and to improve
compatibility with other systems. Finally we want to test our implementation by modelling several
planning problems in our improved version of YAGI and by measuring the performance of those compared
to the previous YAGI implementation.
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2 Related Work

In this chapter we introduce research that we build our own work on and give an overview over work
that is similar to ours. In Chapter 3 we go further in depth regarding topics necessary for understanding
our work.

Situation Calculus [McCarthy, 1963] formalizes how actions affect the state of the world by crafting a
Basic Action Theory, which consists of Foundational Axioms, Action Preconditions, the Initial Database,
Successor State Axioms and the Unique Name Axioms. A situation is described by its action history
starting from the Initial Situation and Fluents hold information about the world depending on the given
situation. The Action Preconditions dictate which actions can be legally executed in a given situation.
Successor State Axioms describe how each fluent changes depending on the action being executed. The
Initial Database contains all logic sentences that hold true in the Initial Situation. Regression allows the
user to ask queries, such as if a fluent holds true or an action is executable in a given situation.

[Levesque et al., 1994] have introduced the programming language Golog, which is executed by an
interpreter written in Prolog and utilizes the features provided by Situatio Calculus. A program can
execute primitive actions or branch and loop depending on a formula over the current situation. The
language also provides non-deterministic constructs such as pick or choose that enable planning, meaning
that all possible execution traces are evaluated internally before returning a suitable one. The semantics
of Golog are defined through the predicate Do(δ, s, s′), which holds true if the execution of the program
δ results in the situation s′ starting from s.

ConGolog [De Giacomo et al., 2000] and its successor IndiGolog [De Giacomo et al., 2009] are Golog
based programming languages with more features added. Online execution mode is introduced, during
which actions are directly executed and decisions are irreversibly made. The search operator enforces
conventional offline behavior, where the whole decision tree is searched for a valid execution trace.
Interrupts and concurrent execution are also among the more sophisticated features of IndiGolog. Online
semantics are formalized through the predicates Trans(δ, s, δ′, s′) and Final(δ, s), where a program δ is
incrementally executed resulting in a new program δ′.

Readylog [Böhnstedt et al., 2007] is another Golog dialect with an interpreter implemented in Prolog.
The language stands out for its optimized forward-planning strategy that allows for better real time
performance in robotic agents. The algorithm calculates an optimal policy for a given input program by
solving a Markov Decision Process. A reward function judges the planning progress and probabilistically
suggests the next action to take. This way the search tree can be kept narrow by cutting off fruitless
branches that don’t contribute to reaching the planning goal. Readylog has been successfully tried in a
robotic soccer domain.

An alternative to Situation Calculus is Fluent Calculus [Thielscher, 2006], where knowledge is represented
as a set of fluents that hold true instead of an action history. Conversely, State Update Axioms specify
which states are added or removed when an action is executed. Progression is used to roll the current
fluent database forward to a new database. This approach also works fine for reasoning with incomplete
knowledge, where the actual state of the world may only be discovered later on. The Fluent Calculus
based counterpart to Golog is FLUX (FLUent eXecutor), a programming language with a Prolog based
interpreter.

The action based programming languages discussed above are designed to be used in autonomous agents
where little to no human intervention is possible. Their applications range from delivery robots to
planetary rovers. For example, [Ingrand et al., 2007] have engineered software for two experimental
rovers from bottom up. Their work covers ways to read and interpret sensor data and the retrievel
terrain data from camera images. The planning system OpenPRS is used for high-level decision making.

[Ferrein et al., 2012] have laid the groundwork for YAGI by specifying a set of requirements for the
language and by suggesting a syntax. According to their specification, an important feature should be
that the ecosystem is independent from Prolog and can easily be embedded into any existing platform.
Focus should also be laid on familiarity to the user, real-time bidirectional communication with the
outside world and abstraction of Successor State Axioms regarding the language design.
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Based on this specification, [Maier, 2015] has further refined the existing language definition and has
created a working interpreter of the YAGI programming language. The interpreter is written in C++
and has a clear separation of back-end and front-end. [Maier, 2015] has shown that his implementation
works and can successfully solve simple planning problems.

Regarding compiler construction, [Nystrom, 2018] provides a broad overview, covering topics such as
parsers, tree-walk interpreters or bytecode virtual machines. At the heart of the book lies the simple
programming language Lox, which is used throughout all chapters to build a fully functional parser
and interpreter step by step. The programming languages Java and C are used for implementing the
ecosystem around Lox.
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3 Prerequisites

3.1 Situation Calculus

Situation Calculus [McCarthy, 1963] is a concept based on Second Order Logic that allows one to reason
about actions and change in the world. So far we’ve only had static and unchangeable statements like
“If it rains, then the floor is wet.” or “There exists no integer greater than one such that one plus the
product of all numbers up to this integer is divisible by said integer.”. But how do we express questions
like “Is the food on the table after we’ve picked it up in the kitchen, have gone to the table and put it
down?” in logical statements? Situation Calculus provides the tools necessary to model such scenarios by
introducing actions, fluents and the concept of situations. The totality of all axioms required to model a
domain in Situation Calculus is called a Basic Action Theory (BAT) D, which is composed of five types
of axioms:

• Foundational Axioms Σ

• Action Preconditions DAP
• Initial Database DS0

• Successor State Axioms DSSA
• Unique Name Axioms DUNA

3.1.1 Example Scenario

We can best demonstrate the basics of Situation Calculus by modelling a simple domain. A packet
delivery robot can travel between various locations, which are sparsely interconnected. The robot can
pick up or drop packets in these locations, but can only carry up to two packets at the same time.

We will introduce the necessary logic sentences step by step in order to build our BAT.

3.1.2 Specifying Constants and Predicates

There are two kinds of objects in our world that we need to work with: Packets and Locations. For those
we declare the constants P1, P2, P3, A, B, C, D, E, F, G, H, I. We introduce the type predicates
packet(p) and location(l) that will later allow us to quantify over the instances of these classes. Please
note that all statements listed below are true, while combinations of locations not present are false. For
example edge(A, I) is false. This concept that all statements not mentioned in the database are false is
called the Closed-World Assumption.

packet(P1)
packet(P2)
packet(P3)
location(A)
location(B)
location(C)
location(D)
location(E)
location(F )
location(G)
location(H)
location(I)

So if one wants to check if the unary predicate P holds for all locations, one can say ∀l : location(l) →
P (l). The quantifier simply quantifies over all known objects in the domain and if the object is a location,
P must hold or otherwise the implication is true anyways, because false can imply anything.
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It’s also possible to add further predicates - so called facts - to our BAT, for example specifying between
which locations the robot can travel:

edge(A,B)
edge(A,D)
edge(B,C)
edge(B,C)
edge(C,E)
edge(D,E)
edge(D,F )
edge(F,H)
edge(G,H)
edge(H, I)

3.1.3 Actions

Actions are the only means by which our robot can interact with the world and can change it. An action
is a function with no further meaning attached to it. Actions can also be made to have parameters. In
our example domain the robot can execute three actions:

• move(l) - Move to a location.

• pickup(p) - Pick up a packet.

• drop(p) - Drop a packet.

Due to the functional nature of actions, Unique Name Axioms DUNA must ensure that only actions with
the same name and parameters are equal:

move(l) 6= pickup(p)
move(l) 6= drop(p)
pickup(p1) 6= drop(p2)
move(l1) = move(l2)→ l1 = l2
pickup(p1) = pickup(p2)→ p1 = p2
drop(p1) = drop(p2)→ p1 = p2

3.1.4 Situations

A situation is a way to express the current state of the world. It is represented by the sequence of actions
taken since the initial situation s0. This definition implies that two situations with the same final result,
but with different actions taken, are not equal. Situations are expressed using the do(a, s)-function. For
example, moving to B and picking up P1 can be written as do(pickup(P1), do(move(B), s0)).

The Foundational Axioms Σ, as defined by [Reiter, 1993], are Second Order Logic sentences and help
define what a valid situation is:

∀P : P (s0) ∧ ∀a, s : (P (s)→ P (do(a, s)))→ ∀s : P (s)
∀s : ¬s < s0
∀a, s, s′ : s < do(a, s′) ≡ Poss(a, s′) ∧ (s = s′ ∨ s < s′)

The first axiom holds the inductive definition of situations. s0 is a valid situation and if s is a situation,
then do(a, s) is also a situation. The overloaded operator s < s′ is true if s′ is reachable from s by legally
executing actions. The second axiom states that no situation precedes the Initial Situation and the third
axiom recursively defines the < operator and enforces preconditions.
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3.1.5 Fluents

In order to assign properties to situations, fluents are used. A fluent is a predicate that tells if a property
holds in a situation. In contrast to facts, fluents accept a situation term as last parameter and their
truth value changes depending on the situation and actions taken. In our robot domain we have the
following fluents:

• robotAt(l, s) - Is true if the robot is at the given location.

• packetAt(p, l, s) - Is true if the given packet is at the given location.

• holds(p, s) - Is true if the robot carries the given packet.

• holdingCount(n, s) - Is true if the robot carries exactly n packets.

3.1.6 Building a Basic Action Theory

So now that we have explained the concept is actions, situations and fluents, we need to express how
they relate to each other. At first we specify in the Initial Database DS0

which fluents hold true in the
initial situation s0:

robotAt(A, s0)
packetAt(P1, B, s0)
packetAt(P2, E, s0)
packetAt(P3, F, s0)
holdingCount(0, s0)

This set of sentences is called the Initial Database DS0
. Note that because the robot holds no packets at

the beginning, holds is false for all packets and is therefore not mentioned according to the Closed-World
Assumption.

Next we want to ensure that actions are only executed if possible. So for each action a precondition
is introduced, which is written as a predicate definition that accepts an action term and a situation as
parameters.

The robot can only move between interconnected locations:

Poss(move(to), s) ≡ ∃from : robotAt(from, s) ∧ (edge(from, to) ∨ edge(to, from))

A packet can only be picked up if it’s at the robot’s location and the robot doesn’t carry two packets:

Poss(pickup(p), s) ≡ ∃from : robotAt(l, s) ∧ packetAt(p, l, s) ∧ ¬holdingCount(2, s)

A packet can be dropped if the robot is currently holding it:

Poss(drop(p), s) ≡ holds(p, s)

But how do we express that an action changes a fluent and that fluents are preserved through time or
that an action doesn’t change a fluent? This issue is called the Frame Problem, for which there exist
multiple solutions. One solution is to introduce a so called Successor State Axiom for each fluent. Such
an axiom doesn’t describe the direct effect of an actions on fluents, but rather how a fluent is changed
by different actions. A fluent becomes true if either γ+ is true or the fluent was true before and γ− is
false:

F (−→x , do(a, s)) ≡ γ+(−→x , a, s) ∨ F (−→x , s) ∧ ¬γ−(−→x , a, s)

The robot is at a location if it has moved there or if it was there before and hasn’t moved anywhere else:

robotAt(l, do(a, s)) ≡ a = move(l) ∨ robotAt(l, s) ∧ @l′ : a = move(l′)

A packet is at a location if the robot has just dropped it there or if it was already there and wasn’t
picked up.

packetAt(p, l, do(a, s)) ≡ a = drop(p) ∧ robotAt(l, s) ∨ packetAt(p, l, s) ∧ a 6= pickup(p)

9



The robot holds a packet if it was just picked up or it was already held and not dropped:

holds(p, do(a, s)) ≡ a = pickup(p) ∧ holds(p, s) ∧ a 6= drop(p)

The holding count has either increased from picking up a new packet or decreased from dropping one:

holdingCount(n, do(a, s)) ≡ (∃p : a = pickup(p) ∧ holdingCount(n− 1, s)

∨ a = drop(p) ∧ holdingCount(n+ 1, s))

∨ holdingCount(n, s) ∧ (@p : a = pickup(p) ∨ a = drop(p))

The structure of the Successor State Axioms shows that the truth value of a fluent isn’t defined explicitly,
but rather emerges from the sequence of actions taken before.

3.1.7 Regression

Now that we’ve modelled the domain of our robot, we can ask queries about the state of fluents or
the possibility to execute new actions. Regression, as extensively described by [Reiter, 2001], works by
providing a query in the current situation and by going back in time to see if the query holds. This
means that all preconditions and fluents are substituted with their respective definitions until all terms
can be proven to lie within s0 or not.

Examples:

• Is it possible to move to I if the robot moved to D?

situation(do(move(I), do(move(D), s0)))

• Is the robot at location B after the robot moved to B and then picked up packet 1?

robotAt(B, do(pickup(P1), do(move(B), s0)))

3.1.8 Progression

Contrary to regression, progession goes forward in time. Situations are not defined by their action history
anymore, but simply by the fluents holding true. Upon execution of an action, the Initial Database is
rolled forward to a new database, where the new truth values of fluents are explicitly stored. While
queries can be answered much quicker this way, one can’t go back in time and see the action history.
However, [Lin and Reiter, 1997] have shown that progression is not always definable in First Order Logic
by giving a counterexample where no progression exists.
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3.2 Golog

Golog [Levesque et al., 1994], which stands for alGOl for LOGic, is an action programming language
that allows one to program with Situation Calculus. Golog is not a programming language itself, but
rather a set of clauses in Prolog. Although being largely imperative, it allows the use of non-deterministic
planning. It can be used for autonomous and dynamic agents or for planning tasks in logistics.

3.2.1 The Do-Predicate

A Golog program δ is a syntax tree of possible expresions discussed below. The predicate Do(δ, s, s′)
is true if δ can be interpreted so that s will become s′. Because Golog is non-deterministic, there may
exist multiple s′ for which the predicate is true given δ and s. The Do-Predicate is false if there is no
path from s to s′ using δ.

3.2.2 Primitive Action

The Golog expression a(...) takes the action with the name a from the BAT, checks its precondition and
then appends it to the action history including the given arguments. The semantics of a primitive action
are as follows:

Do(a(...), s, s′) ≡ Poss(a(...), s) ∧ s′ = do(a(...), s)

3.2.3 Test Action

The Golog expression φ? fails if the logic formula φ doesn’t hold in the current situation and otherwise
execution continues without altering the situation. The semantics of a test action are as follows:

Do(φ, s, s′) ≡ φ[s] ∧ s′ = s

φ[s] means that all situation dependent terms in this formula are evaluated using the given situation.

3.2.4 Sequence

The expression δ1; δ2 executes the two given child expressions sequentially and fails if at least one of these
two programs fails. The semantics of a sequence are defined so that there must exist an intermediate
situation that connects the two programs:

Do(δ1; δ2, s, s
′) ≡ ∃s′′ : Do(δ1, s, s

′′) ∧Do(δ2, s′′, s′)

3.2.5 Non-Deterministic Choice

The expression δ1|δ2 non-deterministically executes one of these child expressions and fails if both fail.
Non-determinism means that the subsequent control flow, including everything after the choice expres-
sion, will be forked in two. One path will have executed δ1, the other δ2. The paths that does’t fail
”win”. The semantics are defined using a logical conjunction:

Do(δ1|δ2, s, s′) ≡ Do(δ1, s, s′) ∨Do(δ2, s, s′)

3.2.6 Conditionals

The expression if φ then δ1 else δ2 endif checks if a logic formula holds and then executes one of two
expressions depending on the formulas truth value. The semantics of this construct can be defined in
Golog itself as (φ; δ1)|(!φ?; δ2) or otherwise as:

Do(if φ then δ1 else δ2 endif, s, s
′) ≡ φ[s] ∧Do(δ1, s, s′) ∨ ¬φ[s] ∧Do(δ2, s, s′)
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3.2.7 Non-Deterministic Choice of Arguments

Golog also allows the programmer to non-deterministically choose arguments for a subprogram. The
expression (πx)δ(x) fails if there is no x such that the subprogram succeeds. The semantics are defined
using an exists quantifier:

Do((πx) δ(x), s, s′) ≡ ∃x : Do(δ(x), s, s′)

3.2.8 Non-Deterministic Iteration

The expression δ∗ executes the given child expression for an undefined number of times, including not
executing it at all. Therefore this expression can never fail. The semantics are defined using Second
Order Logic:

Do(δ∗, s, s′) ≡ ∀P : (∀s1 : P (s1, s1)) ∧ (∀s1, s2, s3 : (P (s1, s2) ∧Do(δ, s2, s3)→ P (s1, s3)))→ P (s, s′)

This means that for all relations P that describe the sequential execution of δ for an arbitrary number of
times, P (s, s′) must hold. A relation P is suitable if it is reflective and transitive. It must be reflective
because δ can be executed zero times and thus s = s′. It must also be transitive because δ∗; δ is a
possible outcome of δ∗.

3.2.9 While-Loop

The expression while φ do δ endwhile works like a classical and deterministic while loop. It executes
the given child expresion as long as the given condition holds for the resulting situation. Its semantics
can be defined as the Golog expression (φ?; δ)∗;¬φ? using non-deterministic iteration until the condition
doesn’t hold anymore.

3.2.10 Programs and Procedures

A complete Golog program is composed of a list of procedures and a main expression that will be evaluated
upon execution of the program. A procedure is a named expressions that may accept parameters and
can be called like a function. Parameters are passed by-value. The Golog program

proc P1(x1) δ1 endproc; ...; procPn(xn) δn endproc; δ0

contains n procedures Pn, each accepting a parameter xn and containing the expression δn. The expres-
sion δ0 is the main program.

3.2.11 Example Program

Based on the robot example described in the chapter above, we implement a Golog program that lets the
robot serve requests. The domain is extended by a fluent requests(p, l, s) that holds all active requests
and an action removeRequest(p) that marks a request as served. The program could look as follows:

proc findPath(to)

while ¬ robotAt(to) do

(π next) (

location(next)?;

move(next)

)

endwhile

endproc;

while ∃ p, l: requests(p, l) do

(

12



(π p’) (

(π l’) (

packetAt(p’, l’)?;

∃ l’’: requests(p’, l’’)?;

findPath(l’);

pickup(p’)

)

)

) | (

(π p’) (

(π l’) (

holds(p’)?;

requests(p’, l’)?;

findPath(l’);

drop(p’);

removeRequest(p’)

)

)

)

endwhile

The procedure findPath iterates until the robot is at the desired location. Each iteration, a random
location is picked and the robot tries to move there. Because the choice of locations is non-deterministic,
the robot will eventually find a path leading to the destination. The precondition of move ensures that
the program will look somewhere else if an unsuitable location is picked. A weakness of this procedure
is that it won’t terminate if there exists no path to the desired location, because the robot will move
indefinitely between already visited nodes. A solution to this problem is to record nodes that have
already been visited and exclude them from the search.

The main part of the program iterates until all requests have been answered. In each iteration, either
a packet at its origin will be visited and picked up or an already loaded packet will be brought to its
destination. This ensures that multiple packets can be loaded at the same time and thus the problem
can be solved with little steps.

Another solution would be to serve requests sequentially, which would be more time efficient, but doesn’t
make use of the robot’s capability to hold multiple packets at the same time.

13



3.3 Transition Semantics of ConGolog and IndiGolog

ConGolog [De Giacomo et al., 2000] and IndiGolog [De Giacomo et al., 2009], which are both Pro-
log based interpreters of Golog, base their execution semantics on the Second Order Logic predicates
Trans(δ, s, δ′, s′) and Final(δ, s) instead of the offline semantics using the Do precidate discussed above.
With the transition semantics it is possible to roll a program δ forward to a new program δ′ in an iterative
manner. Each transition accounts for an atomic step, so online execution is possible and the program
can be interrupted at will. Trans holds true if the program δ along with the situation s can be executed
resulting in a remaining program δ′ and a new situation s′. The predicate Final is true if the given
program can terminate successfully, i.e. no more steps have to be taken. Below is a slight adaptation for
better readability of both predicates as defined by [De Giacomo et al., 2000]. The symbol ε represents
an empty program.

• An empty program can’t be executed any further:

Trans(εεε, , , ) ≡ ⊥
Final(εεε, ) ≡ >

• A primitive action demands a check of its precondition and results in an empty remaining program
and a new situation:

Trans(aaa, s, ε, do(a[s], s)) ≡ Poss(a[s], s)

Final(aaa, ) ≡ ⊥

• Test actions demand the truth of the given formula and result an an empty program and leave the
situation unchanged:

Trans(φ?φ?φ?, s, ε, s) ≡ φ[s]

Final(φ?φ?φ?, ) ≡ ⊥

• When two programs are executed sequentially, the first one is executed until termination and then
the second one is executed:

Trans(δ1; δ2δ1; δ2δ1; δ2, s, δ
′, s′) ≡ (∃γ : δ′ = (γ; δ2) ∧ Trans(δ1, s, γ, s′)) ∨ Final(δ1, s) ∧ Trans(δ2, s, δ′, s′)

Final(δ1; δ2δ1; δ2δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

• Nondeterministic branching tries to find at least one feasible subprogram:

Trans(δ1|δ2δ1|δ2δ1|δ2, s, δ′, s′) ≡ Trans(δ1, s, δ
′, s′) ∨ Trans(δ2, s, δ′, s′)

Final(δ1|δ2δ1|δ2δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)

• Nondeterministic choice of arguments quantifies over the possible options to find a match:

Trans(πv.δπv.δπv.δ, s, δ′, s′) ≡ ∃v : Trans(δvx, s, δ
′, s′)

Final(πv.δπv.δπv.δ, s) ≡ ∃v : Final(δvx, s)

• Because nondeterministic iteration can also lead to the program being executed 0 times, the cor-
responding Final predicate is always true:

Trans(δ∗δ∗δ∗, s, δ′, s′) ≡ ∃γ : δ′ = (γ; δ∗) ∧ Trans(δ, s, γ, s′)
Final(δ∗δ∗δ∗, ) ≡ >

• Conditionals:

Trans(if φ then δ1 else δ2 endIfif φ then δ1 else δ2 endIfif φ then δ1 else δ2 endIf, s, δ
′, s′) ≡ φ[s] ∧ Trans(δ1, s, δ′, s′) ∨ ¬φ[s] ∧ Trans(δ2, s, δ′, s′)

Final(if φ then δ1 else δ2 endIfif φ then δ1 else δ2 endIfif φ then δ1 else δ2 endIf, s) ≡ φ[s] ∧ Final(δ1, s) ∨ ¬φ[s] ∧ Final(δ2, s)
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• While loops:

Trans(while φ do δ endWhilewhile φ do δ endWhilewhile φ do δ endWhile, s, δ′, s′) ≡ (∃γ : δ′ = (γ;while φ do δ endWhile) ∧ Trans(δ, s, γ, s′))
Final(while φ do δ endWhilewhile φ do δ endWhilewhile φ do δ endWhile, s) ≡ ¬φ[s] ∧ Final(δ, s)
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3.4 Q3

Q3 (Questive 3.0) is an event based, dynamically typed, functional and object oriented language de-
veloped by us [Eckstein, 2019] in parallel to this project. It was originally designed for a Minecraft
server to be used for ingame scripting, such as quests or minigames. As Minecraft is written in Java,
the ecosystem around Q3 is Java-based as well. The language is compiled to Q3 bytecode, which is
executed by the Q3 Machine (Q3M). The Q3M can also be embedded in any other Java-application with
ease. The programmer can make Java functions and classes callable within Q3 through the use of Java
annotations. Alternatively the language can be used without a host system through an interactive shell.

The strongly and dynamically typed language is inspired by actor systems, where actors or tasks run
independently and communicate via messages. Q3 provides a task hierarchy, where a task has control
over its child tasks. If a task terminates, all its child tasks are forced to terminate too. When a task
throws an exception, the task is killed and the exception is propagated to the parent task unless an error
handler is set. The task hierarchy allows effective control and isolation of single components. Tasks
can either broadcast signals or wait for signals, with pattern matching taking place. The host system
can send signals as well, with the Q3 program reacting to it. Asynchronous data types such as futures
are also provided by the language, such that non-blocking I/O can be implemented transparently and
the Q3M can run in a separate thread. Q3 has a rich type system (everything is an object) with a
high degree of reflection and introspection. For pattern matching, there is a type implication relation
defined, where null implies all other values and true is implied by everything. A class is implied by its
superclass, while an instance of a case class is implied by an instance of the same type with matching
wildcards. Code can be compiled and swapped at runtime, allowing the programmer to develop on a
running system. A Loader is a class that represents the contents of a code file and is responsible for
resolving accesses to functions or classes. Loaders can be manipulated at runtime to load or reload code.
A standard library provides basic data structures and access to the filesystem and network.

The repository along with the documentation for Q3 is linked below.2

2https://git.rootlair.com/teckstein/q3
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4 Problem Statement

As discussed in Chapter 2, there already exist two mentionable Golog based interpreters aside from Golog
itself: IndiGolog, which is based on Prolog and YAGI, which has been developed by [Maier, 2015] as a
standalone interpreter written in C++. In this chapter we describe the drawbacks of these two and why
it is necessary to redesign YAGI.

IndiGolog, as described by [De Giacomo et al., 2009], is merely a set of Prolog clauses making up an
interpreter. The user gives a Golog program as a set of Prolog clauses, where each procedure is a clause.
Such a procedure is given more or less as its raw syntax tree, so little structure and order can be brought
into such a program. While the Prolog interpreter can detect simple syntax errors, semantical errors
like referring to a non-existing procedure or variable remain undetected at compile time. Debugging
Prolog programs can be quite a challenge. The most severe drawback however is that Prolog and thus
IndiGolog uses depth-first-search, which doesn’t always terminate and often doesn’t yield the optimal
result. Advanced searching techniques like iterative deepening can be used to mitigate this problem, but
it adds yet another layer of complexity to the Golog program.

In response to IndiGolog, [Maier, 2015] has implemented YAGI (Yet Another Golog Interpreter), which
we will refer to as Legacy YAGI in this paper. The ecosystem of Legacy YAGI consists of a language
definition and a parser and interpreter written in C++ including an API. The user can develop their
program in a Golog based language with a clearly defined syntax and a sufficient amount of structure.
When running the resulting program, the parser first builds a syntax tree and checks for syntactical
correctness. ANTLR, a popular framework for building parsers, is used. The typechecker can detect
some types semantical errors at compile time. A classical syntax tree walker is used for the execution
of the program. Fluents are represented by SQL tables, whereat SQLite is used as engine. Unlike in
IndiGolog, the effects of actions are modelled explicitly by stating which fluents are changed directly
instead of stating which fluents are changed by which actions in the Successor State Axioms.

The ecosystem comes with a built in shell, where the user can run and interact with Legacy YAGI
programs. Output is delivered via signals, which are represented by strings, and is sent to the system
interface where it is either forwarded to an agent or to the shell for the user to see. The program retrieves
input from the outside world by calling setting actions. Upon the invocation of a setting action, the
agent reads a concrete value or the user can manually input data.

However, Legacy YAGI still has a number of drawbacks. The most severe is the lack of data types in
the language. So far only strings can be used for passing values. There are no enum types for organizing
constants belonging together logically. Numeric types are lacking and so are arithmetic operators. It is
thus hard to work with coordinates or ordered elements in general. Legacy YAGI has the comparison
operators < <= >= >, which compare strings lexicographically. To check if the number nine is less than
twelve, one would have to write "09" < "12".

Because there are no enum types to organize constants with, the user has to state all possible values
each time:

fluent objectAt [{"object1", "object2", "object3"}][{"room1", "room2", "room3"}];
fluent personAt [{"alice", "bob"}][{"room1", "room2", "room3"}];

Instead of simply stating that both fluents require a room as a second parameter, all rooms must be given
in both declarations. Larger domains or more complex programs can easily get messy this way. This
becomes a huge obstacle when refactoring code. If another object is introduced, all fluents referencing
similar objects must be updated accordingly.

Another drawback is the verbose syntax of Legacy YAGI. Instead of using curly brackets, control struc-
tures are closed with the keyword end and the name of the control structure. For example, a simple
if-then-else statement is written like this:

if (condition) then
doThis();

else
doThat();
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end if

Unless having an IDE with good auto completion available, such a syntax can increase the effort of
writing the program significantly. When extracting values from a set, pick-statements are used:

pick <$value> from someFluent such
doThis();

end pick

The visibility of the variables picked is limited to the enclosing block. If multiple pick operations are
executed sequentially, these would need to be nested repeatedly. Furthermore there is no way to limit the
scope of pick before executing the contents of the block. With online semantics this can be a considerable
problem, because there is no way to specify in detail which value to pick and so the program will likely
fail. This is less of a problem with offline semantics, because all possibilities are searched before executing
any actions, but it can make a negative performance impact overall.

As [Maier, 2015] describes in ,,Future Work”, there should be some optimizations the user can make to
the search algorithm to cut off search branches not leading to a result or branches that have already
been searched through.

Another issue is the limited functionality of the typechecker. When there are no enum types, it’s hard
to keep track of which strings can be passed to a fluent and which variable likely holds which type at
a given time. This still leaves the possibility of getting runtime errors that could have been detected
during compilation. Through the use of an out-of-the-box parser, in this case ANTLR, only basic error
messages for syntax errors can be produced, which negatively impacts the development process for the
user.

As mentioned above, Legacy YAGI uses SQL tables to represent fluents and uses SQL queries to access
or update them. This approach adds significant overhead to the execution of the program, because SQL
tables consume more memory than a specifically tailored data structure and processing queries also takes
substantial CPU time, which becomes a problem when performing extensive planning.

Considering the disadvantages of Legacy YAGI described above, it becomes necessary to revisit the
ecosystem in all of its aspects and to design a more user friendly and feature rich language based on
Golog. The user must be able to use more data types such as numbers, tuples or enums values. The
compiler must be able to detect all syntactical and semantical issues in the given program and output
informative error messages to the user. There must be a way to bring more structure into programs
and to control the behavior of the search algorithm in order to increase performance and decrease the
memory footprint.

Making YAGI platform independent was also a core issue that [Maier, 2015] left open. Legacy YAGI is
so far only available for Unix-like systems with numerous dependencies needed to be manually installed
for the application to work.
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5 Concept

We decide to embed YAGI into the Q3 ecosystem since the Q3M is already a powerful enough interpreter
to execute YAGI code, so we don’t have to write a new interpreter for YAGI, but merely a compiler.
A great strength of the Q3M is to execute many tasks in one thread, which is incredibly useful for
implementing a breadth-first search algorithm. Another advantage is that we have a scripting language
with which we debug and test our implementation. Q3 scripts can also be used to glue YAGI and external
components together, meaning that the execution of the YAGI program and event handling can be fine
tuned well. Since Q3 is Java-based, platform independence is easily achievable, as only JDK (the Java
compiler and other development tools) and Maven (a popular build tool for Java) are required to build
the program.

5.1 Architecture

Figure 1: A detailed architectural overview of a YAGI program and the components around it.

A system executing a YAGI program consists of multiple components and layers interacting with each
other. The most important component of any software system is of course always the user, who is
responsible for setting up the workspace, installing YAGI and getting it to work on the host agent of
their choice. Then the user has to write the YAGI program, which consists of the BAT and the business
logic.

The YAGI Library, as outlined in Figure 1, contains the YAGI Compiler, which checks for syntactical
and semantical errors and compiles the program to Q3 Bytecode, which can be run on the Q3 Virtual
Machine (Q3M). It additionally provides library functions and data types such as sets (YagiSet) and
ranged integers (IntRange) to the Q3M.
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The Q3 Executable File (.q3x) generated by the compiler contains a class called YagiWorld, which in
turn contains all actions, procedures and facts. It also contains the class representing a situation, which
holds all fluents. Furthermore the YagiWorld class has a member variable for each sensing and signal
declaration, to which a function can be assigned. Aside from the constructs occuring in the YAGI
program, the YagiWorld contains some helper functions and variables. The contents of this class will be
discussed in a later chapter in detail.

The controller is a Q3 script that connects the user, the YagiWorld and the agent with each other. It
instantiates the YagiWorld and assigns functions to the sensing and signal handlers. These functions
are called by the YAGI program and read information from the real world or trigger an event. The
controller can then call procedures, which take a starting situation as parameter and return the resulting
situation. As a side effect sensing and signal handlers are invoked. Because facts are instances of YagiSet
and YagiSets are mutable, the controller has the power to manipulate facts. Chapter 6.3 goes more into
detail on how these functions inside the YagiWorld interact with each other.
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5.2 Syntax

This chapter explains how the YAGI language works on a syntactical level and how it is eventually
compiled to executable Q3 bytecode.

5.2.1 Grammar

The grammar is given as EBNF (Extended Backus-Naur Form) and uses the following notation:

Notation Meaning
[ ] Optional (None or once)
{ } Repeat 0 to n times
< > Repeat 0 to n times separated by comma. Trailing comma allowed.
, Sequence
| Alternative
abc Non-terminal
" " Token
/ / Regex

program = { action | enum | fact | fluent | include
| proc |situation | signal | sense | ";"}

action = "action", id, parameterList,
"{",
["poss", (braces | block)],
["do", block],
["signal", id, argumentList],
"}"

enum = "enum", id, "{", <id>, "}"
fact = "fact", id, domain, set
fluent = "fluent", "id", domain
include = "include", string
proc = "proc", id, parameterList, block
situation = "situation", id, block
signal = "signal", id, parameterList
sense = "sense", type, id, parameterList
block = "{", {if | while | choose | procCall | pick, (expr, ";")}, "}"
if = "if", "(", expr, ")", block, ["else", block]
while = "while", "(", expr, ")", block
choose = "choose", block, "or", block, {"or", block}
procCall = ["search"], id, argumentList
pick = "pick", tupleAssign, "in", quantifierSet,

["such", (block | quantifiers)]
expr = (expr) | assign
assign = [(("$", id) | id | tupleAssign),

("=" | "+=" | "-=" | "*=" | "/=" | "%=" | "&=")],
quantifiers

quantifiers = implies |
(("for", "exists"), tupleAssign,
"in", quantifierSet,
["such", (block | quantifiers)])

implies = or, ["->", implies]
or = and, ["||", or]
and = cmp, ["&&", and]
cmp = addSub, [("==" | "!=" | "<" | "<=" | ">=" | ">"), cmp]
addSub = multDiv, [("+" | "-"), addSub]
multDiv = unary, [("*" | "/" | "%"), multDiv]
unary = (("!" | "-" | intType), unary) | atom

atom = set | tuple | braces | int | float
| boolean | string | var | any
| senseCall | setAccess | enumAccess
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set = "{", [domain, "|"], <expr>, "}"
tuple = "[", <expr>, "]"
tupleAssign = "[", <var | any>, "]"
braces = "(", expr, ")"
boolean = "true" | "false"
var = "$", id
any = "_"
senseCall = "sense", id, argumentList
setAccess = ["$"], id, "[", <expr>, "]"
enumAccess = id, ".", id

parameterList = "(", <parameter>, ")"
parameter = type, "$", id
argumentList = "(", <expr>, ")"
quantifierSet = (domain | id | atom)

type = intType | id | domain | setType
| "float" | "string" | "boolean"

intType = "int", ["[", [num], ":", [num], "]"]
domain = "[", <type>, "]"
setType = "{", type, "}"

id = / [a-Z][A-Z,a-z,0-9,_]+ /
int = / 0 | [1-9][0-9]* | -[1-9][0-9]* | 0x[0-9,A-F]+ | 0b[01]+ /
float = / [-]?([0-9]+[.])?[0-9]+ /
string = / \".*?\" /

Please note that a syntactically correct program isn’t automatically semantically correct. For example,

action foo() {
do {
search bar({[float, string] | [true, $xyz]});
[] = _;

}
}

can be parsed just fine, though the typechecker will notice that procedures can’t be called inside of
actions and that types are mismatched.

5.2.2 Keywords

The following keywords are reserved and thus can’t be used as identifiers:

proc, action, poss, do, fluent, enum, fact,

situation, ignureunused, signal, sense, include,

if, else, while, for choose, or, exists, pick, in, such, search,

true, false, int, float, boolean, string

5.2.3 Operators

These characters and combinations of characters are recognized by the tokenizer as valid operators:

, . : ? ! ; $ _ |

( ) [ ] { }

+ - * / %

-> || &&

= == != < <= >= >

+= -= *= /= %= &=
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5.2.4 Reserved Identifiers

Some case-sensitive identifiers are already reserved by helper functions generated by the compiler and
by library functions. While variables are fine, naming declarations like this may result in complications.

• YagiSet

• Domain

• IntRange

• Situation

• List

• compileYagiFile

• copySituation

• fluentNames

• new

• senseNames

• signalNames

• signals

• startYagiSearch

• taskCount
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6 Implementation

6.1 Language Specification

The source code of a valid YAGI program is given as a set of one or more plaintext files, which are
encoded in unicode and contain valid YAGI code.

6.1.1 Data Types

The Language supports the following data types which can be passed as variables:

• Integers with optional range bounds

• User defined enum types

• Booleans

• Floating point numbers

• Strings

• Tuples

• Sets

Integers
A signed 64-bit integer can be written in the usual decimal notation like 42 or -3. Hexadecimal, binary,
octal notations are also supported and follow the same syntax as in the Java programming language. A
hexadecimal number is preceded by 0x, followed by at least one digit ranging from 0 to 9 and from a to f
(case insensitive). A binary number, consisting of ones and zeroes, is preceded by 0b. An octal number
is preceded just by 0 followed by digits from 0 to 7. The range of integers lies between −263 and 263− 1,
both inclusive.

The type of an integer is denoted by the keyword int. There also exist ranged integer types in order
to write more consistent programs and save memory and runtime. int[0:5] is an integer between 0
and 5, also both inclusive. An integer can also only have either an upper or a lower bound, for example
int[:-1] denotes a negative number and int[1:] a positive one.

Enums
Instead of describing objects with magic values or unorganized constants, YAGI offers enum types, which
are declared in the global scope:

enum Color {
RED,
GREEN,
BLUE,

}

As the above code shows, trailing commas are allowed in YAGI for convenience. An enum can have an
arbitrary number of constants, although they must all have a unique name. A specific element in the
above enum can for example be adressed with Color.RED.

Booleans
The type boolean has only two possible values, namely true and false. Booleans may show up as true
and null in output logs, because false is internally represented as null.
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Floating point numbers
64-bit precision floating numbers of the type float can only be denoted in the formats 1.23, -1.23,
.123 and -.123. Other notations are not yet supported. Unlike for integers, there are no ranged types
for floats.

Strings
Strings can be denoted with two apostrophes, for example "Hello World!" or "ハロー・ワールド！".
Escape sequences as specified in the Java language can be used. They have no use in the YAGI pro-
gramming language other than printing debug output.

Tuples
A tuple is an immutable list of values of various types. [true, 3, [Color.RED, Color.BLUE]] for
example is a tuple of the type [boolean, int[3:3], [Color, Color]].

Sets
Only sets of tuples are supported, whereas the types of elements in the tuples are restricted to ranged in-
tegers, enums and booleans. {[1, Color.GREEN], [4, Color.RED]} is a set of the type {[int[1:4],

Color]}. Usually, the type of the set can be inferred. If that isn’t the case, the type of the set can be
given at the beginning, followed by a horizontal line and the elements of the set: {[int[0:5], Color]

| [1, Color.GREEN], [4, Color.RED],}

6.1.2 I/O

There exist two channels through which a YAGI program can interact with the outside world. Signals
are used to tell the agent to execute a concrete action. They are either executed as they are called
(online semantics) or are executed after a valid action sequence has been found after searching (offline
semantics). Signals can only be called when executing an action. However one must first declare the
name and parameters of a signal in the global scope. The variable names of the parameters only serve
the purpose of documenting the code.

signal rotate(float $angle, Axis $axis)

The above code declares a signal and generates a member variable in the resulting YAGI world, where
the wrapper script can attach a function that actually executes the signal. Signals have no return value,
so one has to assume that they succeed.

The other communication channel is sensing, where the YAGI program can actively query a value from
the world. Just like signals, sensing calls can only be made inside of actions. They must also be declared
in the global scope, so a member variable can be created for the sensing function.

sense float measureRoomTemp(Room $location)

The above sensing declaration takes a Room as parameter and returns a floating point number.

The Chapter 6.1.3 describes in more detail how signals and sensing are used.

6.1.3 Domain Modeling

In order to model the world we want to reason in, we can use several building blocks known from situation
calculus. Instead of modeling every single axiom (successor state axioms, situations), we can work on a
much higher level and model fluent transitions imperatively.
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Fluents
A fluent is basically a predicate that holds for the members of a mutable set of tuples. A fluent can be
thought of as a member variable of the current situation. They are used to store the current knowledge
of the world. For example, we can store where each object is located:

fluent objectAt[Object, Location]

As our fluent is a set of tuples and not a function that maps from Object to Location, the same object
could theoretically be in two locations unless we forbid such behavior in the actions we’re going to declare.

Facts
A fact behaves just like a fluent on a semantical level, except that it can’t be changed at runtime within
YAGI. Through the Q3 wrapper script or interactive console it’s still possible to change its value however.
Values are assigned to facts directly in their declaration.

fact edge[int[1:4], int[1:4]] {
[1, _],
[_, 1],
[2, 3],
[3, 4],
[4, 2],

}

The wildcard _ matches all integers between 1 and 4, so there is both an incoming and outgoing edge at
node 1 from and to all other nodes.

Actions
An action is a sequence of statements used to manipulate fluents in a controlled fashion. As the action is
appended to the current situation, the values of the fluents are altered. An action can accept parameters
and may contain a precondition that must be true in order to execute the rest of the action. If the
precondition is false, the program or the current search branch fails. If a precondition isn’t necessary, it
can be left out. Furthermore, a do block is required, where fluents are changed and afterwards a signal
can be sent that actually executes the action in the real world. It’s not mandatory for an action to have
a signal though. Fluents can only be altered in the do block.

action dropObjectHeld(Hand $hand) {
poss (objectsHeld[$hand, _]) # action precondition
do { # action effect
objectsHeld -= [$hand, _];

}
signal openHand($hand)

}

In order to be able to drop an object, one must hold any object. If this isn’t the case, executing the
program any further makes no sense. Then we remove the object we’re holding in said hand from the
fluent value. Finally, the signal to open the hand is sent.

It is allowed to have a block of statements as a precondition, so variables declared in the precondition
are accessible afterwards. The code below has the same functionality as the code above:

action dropObjectHeld(Hand $hand) {
poss {
pick [$hand, $obj] in objectsHeld;

}
do {
objectsHeld -= [$hand, $obj];

}
signal openHand($hand)

}

26



Instead of checking if any object is held, we find out the concrete object in the specified hand and don’t
use wildcards. As obvious, the first code sample is both more elegant and efficient.

Sensing in Actions
In order for the agent to expand and update its knowledge of the world, it has to call actions that sense
a value and store it in the fluents. A call to a sensing function is preceded by the sense keyword. For
example

action measureCurrentTemp() {
poss {
pick [$room] in at;

}
do {
temp -= [$room, _];
$measuredTemp = sense measureRoomTemp();
temp += [$room, $measuredTemp];

}
}

can be called to measure the temperature in the current room and store it in the designated fluent.

Situations
The last step of domain modeling is to specify what the initial situation looks like. YAGI allows the
user to declare as many initial situations as needed. Besides changing the values of fluents, no other side
effects are allowed. Following conventions, the initial situation is named S0:

situation S0 {
objectsHeld = {[Hand.LEFT, Object.KNIFE], [Hand.RIGHT, Object.FORK]};
objectAt += [Object.PLATE, Location.TABLE];
objectAt += [Object.GLASS, Location.TABLE];
objectAt += [Object.PAN, Location.KITCHEN];

}

6.1.4 Variables

Local variables are denoted by $ followed by their name. The type of local variables can usually be
inferred by the typechecker. Parameters of declarations however need to be preceded by their type.
Facts and fluents can be referred to without a preceding $ as they are not variables, but rather entities
in the global scope.

6.1.5 Operators

YAGI supports the following operators, sorted by precedence, beginning with the weakest:

• = += -= *= /= &= |= Assignment operators:

– += is defined for numbers, strings and sets/fluents. To the latter it adds another set or a single
tuple (union).

– -= is defined for numbers and sets/fluents. From the latter it removes another set or a single
tuple (difference).

– *= /= are defined for numbers. For example, the program $num *= 2; behaves just like
$num = $num * 2;. The same goes for the operators += -= /=.

– &= is defined for booleans and for sets/fluents. For the latter it intersects the two sets and
stores the result in the variable on the left handside.
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– |= is defined for booleans. The program $bool1 |= $bool2; behaves just like $bool1 =

$bool1 || $bool2;. The same goes for the operator &=.

• exists for See the following chapter.

• -> Logic implication, defined for booleans. Short circuit evaluation is applied for this operator, ||
and &&.

• || Logic OR, defined for booleans.

• && Logic AND, defined for booleans.

• == != < <= >= > Comparison operators. The latter four are defined for numbers.

• + - Addition and subtraction are defined for numbers.

• * / \% Multiplication, division and modulo are also defined for numbers.

• ! - int Unary operators:

– ! Boolean negation. Also defined for sets, where the result of the operation is the complement
of the set regarding its designated domain.

– - Arithmetic negation. Defined for numbers.

– int Static integer cast. Used to ensure the correct range of an integer or to convert a float to
an integer. If a value lies outside its designated range, the result is the bound closest to the
original value. For example, int[1:10] 69 evaluates to 10.

Subscript operator
The subscript operator [ ] is preceded by a fluent or a variable that holds a set. The operator evaluates
to true if the set contains at least one tuple with the specified values. objectAt[_, Location.KITCHEN]

is true if there is at least one object in the kitchen. The subscript operator is syntactic sugar for a trivial
case of the exists quantifier, namely exists [_, Location.KITCHEN] in objectAt.

Tuple Assignment
In order to extract values from a tuple and assign them to multiple variables at once, tuple assignment
does the trick. A similar feature exists in Python or in PHP, where it is known as array unpacking.

$myTuple = [true, Room.KITCHEN, 3];
[$success, $room, _] = $myTuple;

The wildcard discards the value at the corresponding index. Tuple assignment could also be used to
swap values of variables within one line:

[$x, $y] = [$y, z];

6.1.6 Control Structures

Blocks
A block is denoted by curly brackets and contains an arbitrary number of statements, each followed by
a semicolon. Semantically all statements are linked with ∧ and true is the neutral element regarding
the operation ∧. Thus an empty block evaluates to true and a non-empty block is true if all of its
statements are true. As soon as a statement is false, no more statements are evaluated and false is
returned, which causes the program, search branch or condition to fail.

{
$set = {[1], [2], [4]};
$set[3]; # Test if 3 is contained in $set.
$set += {[3]}; # This line is never reached because the above statement fails.

}
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Variables declared inside a block aren’t accessible outside of it.

Conditionals
If-conditionals are expressed in the usual way:

if (objectsHeld[_, Object.DINNER] && at[Location.TABLE]) {
putTo(Object.DINNER, Location.TABLE);

}

else branches and if-else branches are also possible:

$grade;
if ($score < 50) {
$grade = 5;

} else if ($score < 62.5) {
$grade = 4;

} else if ($score < 75) {
$grade = 3;

} else if ($score < 87.5) {
$grade = 2;

} else {
$grade = 1;

}

Please note that conditionals always require blocks in order to promote clean coding. No side effects such
as action calls or variable assignments are allowed in the condition. The same is true for while loops.

While Loops
A while loop executes its subsequent block as long as its condition is true.

while(requests[_, _]) {
pick [$object, $destination] from requests;
serveRequest($object, $destination);

}

The code above serves requests until there are no more to serve.

Quantifiers and Formulas
There exist two quantifiers, namely exists and for, while the latter can be both used as a forall quantifier
or a foreach loop. The basic syntax for quantifiers is the same. First comes the name of the quantifier,
then a tuple with the variables to be bound, the keyword in followed by an expression evaluating to a
set and an optional such followed by a boolean condition. The set expression can either be a variable,
a fluent name or a domain.

exists [$obj, _] in objectAt such $obj == Object.PLATE || $obj == Object.GLASS;

If an element in the tuple after exists is an already declared variable or is an expression, the searched
elements are filtered by its value. If a variable isn’t already declared, it will be freshly bound and is
accessible in the condition. The exists quantifier is true if at least one tuple exists in the specified set
where the tuple matches and the condition evaluates to true. The condition of exists statements permits
no side effects. One can not only quantify over fluents, but also over sets and domains. The syntax for
the latter is the following:

exists [$x, $y] in [int[0:5], int[0:5]] such $x * $y == $x + $y;

The code above quantifies over all 36 (6× 6) possible combinations of integers until a matching tuple is
found.

The for quantifier has a similar syntax:
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for [$obj, Location.DISHWASHER] in objectAt such isDirty[$obj];

The above statement is true if all objects in the dishwasher are dirty.

Blocks after such are allowed in for quantifiers. A block evaluates to true if each statement in the block
is true. This way the code above could also be expressed this way:

for [$obj, Location.DISHWASHER] in objectAt such {
isDirty[$obj];

};

It is important not to forget the semicolon, because for is a quantifier and thus an expression!

The for quantifier permits side effects in the condition in contrast to exists and pick. This way it can
be abused as a classical foreach loop:

$sum = 0;
for [$x] in [int[1:100]] such {
$sum += $x;

}

The code above calculates the sum of all integers between 1 and 100, each inclusive. Note that the order
of the iteration is non-deterministic, meaning that the elements in the specified set, domain or fluent
may be enumerated in an arbitrary order. To enumerate integers in an ordered way, use a while loop. It
may be noted that the typechecker doesn’t get the bounds of integers right in loops because predicting
the number of iterations is equal to solving the halting problem.

Pick
It is often necessary to bind values from sets to variables for later use. A pick statement has a syntax
similar to quantifiers and instead of the variable scope being limited to the condition, they are still visible
afterwards. If no matching tuple is found in the set, the pick statement and thus the program or current
search branch fail. Outside of search mode, one matching tuple is picked and the rest of the program
either succeeds or fails. During search mode, all possible outcomes of the pick statement are executed
concurrently and one succeeding execution path is chosen as search result.

pick [$i] in [int[1:100]]; # The result is bound to $i
walkSteps($i); # Walk a random amount of steps

pick can also be used in combination with such in order to limit the possibilities of results one can get:

pick [$i] in [int[2:100]] such $x % 2 == 0; # Pick an even number between 2 and 100.

Just like with exists and for, the scope of values searched can be constrained:

$leftHand = Hand.LEFT;
pick [$leftHand, $objectHeld] in objectsHeld;

It is advised to use pick in combination with such as much as possible to make the code more efficient
while in search mode.

Choose
A choose construct starts with the keyword choose and a block of statements. An arbitrary number of
blocks, each preceded by or can follow. The interpreter executes one of those blocks non-deterministically.
When outside search mode, one of the blocks is picked with equal chance and is then executed. During
search mode, all blocks are executed concurrently and one succeeding block is chosen as outcome. A
choose construct must at least contain 2 blocks and can only be called inside of procedures.

choose {
pick [$loc] in [Location];
walkTo($loc);

} or {
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pick [_, $object] in objectHeld;
drop($object);

} or {
pick [_, $object] in objectAt;
pickup($object);

}

6.1.7 Procedures

Procedures are the heart of Golog and YAGI. They contain the actual ”business logic”, which are instruc-
tions and statements that define the behavior of the program. A procedure can call other procedures or
itself, execute actions and plan, but can’t modify fluents directly. Only actions can change fluents. A
procedure can have parameters, but unlike a classical function it doesn’t have a return value. It either
succeeds or fails.

proc findPath(Location $to) {
while (!at[$to]) {
pick [$next] in [Location];
move($next);

}
}

The code above will very likely fail outside of search mode. As long as the agent isn’t at the desired
position, it tries to guess the next position it can move to. If the precondition of the action move is false
- which is the case if there is no connection between the current position and the random position - the
whole procedure will fail.

6.1.8 Searching and Planning

The core purpose of YAGI is to enable planning, which means that in order to find a suitable sequence of
actions, all possible - or reasonable - sequences of actions are tried until a result is found. If a procedure
call is preceded by the search keyword, the called procedure and all its nested procedure calls are
executed in search mode. If a pick statement or a choose construct are encountered in search mode,
the control flow forks each time and executes each outcome concurrently. The first execution path that
reaches the end of the searched procedure will actually be executed. If every path fails before reaching
the end of the procedure, the search itself fails.

search findPath(Location.KITCHEN);

The code above tries to find and execute one valid path to the kitchen.

Let’s say we have the following code that is executed in search mode:

doThis();
findPath(Location.TABLE);
doThat();

At first it seems to work, because all nested procedure calls are executed in search mode too. However
this code is grossly inefficient, because findPath outputs not only one plausible path, but all combinations
that are then forwarded to doThat();. We know that choosing a slightly different path won’t affect the
overall outcome. What we want is to precede findPath with a search keyword, so only at most one
path is returned.

Signals of actions are buffered while searching and are executed just after the uppermost search call has
been left. It is not possible to sense input while in search mode.

Figure 2 illustrates how the search result is rather optimal regarding the number of decisions made than
regarding the number of actions taken. At first the procedure something() is called in online mode with
a preceding search keyword, creating a new search tree. With each decision being made, the search tree
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Figure 2: A visualization of a hypothetical search tree, where each decision is annotated with pink text
and each action is marked with a cyan dot.

grows by one level, while actions don’t influence the vertical structure of the search tree. Search branches
are cut off by failing action preconditions or failing test actions. The figure also shows that nested search
calls only yield one valid path instead of handing each solution to the outer search tree. As soon as a
branch finishes evaluating the procedure something, a solution has been found and all remaining search
branches are terminated. Those are marked in dark yellow. Even though the search branch on the right
could yield a solution with less actions than the search branch on the left, one more decision is required
and thus the left branch is chosen.

6.1.9 Miscellaneous Compiler Features

The compiler for YAGI offers some features that make organizing the code easier.

6.1.10 Including Other Files

As a project grows, it becomes necessary to split it into separate files. The keyword include followed by
the path to the included file relative to the current file includes all declarations contained in the specified
file. Declarations are included in a flat manner, meaning that if A includes B and C, then B has access
to all elements contained in C and vice versa. Includes can also be nested. Example:

include "bat.yagi"
include "signals.yagi"

The root file, which includes all other files, must be passed to the compiler as argument.
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6.1.11 Ignore Warnings for Unused Declarations

It can be helpful when the compiler spots declarations that aren’t used anywhere in the program. However
the compiler doesn’t know which procedures and functionality the wrapper program accesses. In order to
suppress those annoying warnings, the keyword ignoreunused can be used followed by an enumeration
of declaration names to ignore:

ignoreunused (main, S0)

Any name can go in there - even if the declaration doesn’t exist at all or is in another file.
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6.2 Specification Conformance of YAGI

In this chapter we discuss how the language features of YAGI relate to Situation Calculus and Golog and
why our implementation behaves the defined way. To accomplish this, we formalize the complete feature
set of YAGI using the function Y agiEval and the predicates Y agiFormula, Y agiTrans and Y agiF inal.
We treat a situation as a fluent collection c, where the state of each fluent is stored explicitly instead of
saving the action history.

6.2.1 Expressions

For evaluating expressions in YAGI we introduce the function Y agiEval(ξ), which interprets the given
expression ξ and gives its value. Constants evaluate to their designated value with no computation being
performed:

Y agiEval(truetruetrue) = >
Y agiEval(falsefalsefalse) = ⊥

Y agiEval(nnn) = n, n ∈ N
Y agiEval(rrr) = r, r ∈ R
Y agiEval(sss) = s, s ∈ String

Y agiEval(−ξ−ξ−ξ) = − Y agiEval(ξ), ξ ∈ R
Y agiEval(ξ1 + ξ2ξ1 + ξ2ξ1 + ξ2) = Y agiEval(ξ1) + Y agiEval(ξ2), ξ1 ∈ R ∧ ξ2 ∈ R
Y agiEval(ξ1 + ξ2ξ1 + ξ2ξ1 + ξ2) = Y agiEval(ξ1) ‖ Y agiEval(ξ2), ξ1 ∈ String ∨ ξ2 ∈ String

Y agiEval(ξ1 − ξ2ξ1 − ξ2ξ1 − ξ2) = Y agiEval(ξ1)− Y agiEval(ξ2), ξ1 ∈ R ∧ ξ2 ∈ R
Y agiEval(ξ1 ∗ ξ2ξ1 ∗ ξ2ξ1 ∗ ξ2) = Y agiEval(ξ1) · Y agiEval(ξ2), ξ1 ∈ R ∧ ξ2 ∈ R
Y agiEval(ξ1 / ξ2ξ1 / ξ2ξ1 / ξ2) = Y agiEval(ξ1)÷ Y agiEval(ξ2), ¬(ξ1 ∈ N ∧ ξ2 ∈ N)

Y agiEval(ξ1 / ξ2ξ1 / ξ2ξ1 / ξ2) = Y agiEval(ξ1) div Y agiEval(ξ2), ξ1 ∈ N ∧ ξ2 ∈ N
Y agiEval(ξ1 % ξ2ξ1 % ξ2ξ1 % ξ2) = Y agiEval(ξ1) mod Y agiEval(ξ2), ξ1 ∈ R ∧ ξ2 ∈ R

Y agiEval(int[lower : upper] ξint[lower : upper] ξint[lower : upper] ξ) = max(lower,min(upper, Y agiEval(ξ)))

Y agiEval([
−→
ξ ][
−→
ξ ][
−→
ξ ]) = 〈Y agiEval(

−→
ξ )〉

The operator ‖ stands for string concatenation. Interpretation of tuples is defined in the last line,
meaning that Y agiEval([1 + 2, 3][1 + 2, 3][1 + 2, 3]) = 〈Y agiEval(1 + 21 + 21 + 2), Y agiEval(333)〉 = 〈3, 3〉.

6.2.2 Formulas

Similar to Y agiEval, the predicate Y agiFormula(φ, c) is true if and only the given formula φ holds for
the fluent collection c. All operators and constructs, which evaluate to booleans, are defined via this
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predicate:

Y agiFormula(!φ!φ!φ, c) ≡ ¬Y agiFormula(φφφ, c)

Y agiFormula(φ1 && φ2φ1 && φ2φ1 && φ2, c) ≡ Y agiFormula(φ1φ1φ1, c) ∧ Y agiFormula(φ2φ2φ2, c)

Y agiFormula(φ1 || φ2φ1 || φ2φ1 || φ2, c) ≡ Y agiFormula(φ1φ1φ1, c) ∨ Y agiFormula(φ2φ2φ2, c)

Y agiFormula(φ1 − > φ2φ1 − > φ2φ1 − > φ2, c) ≡ Y agiFormula(φ1φ1φ1, c)→ Y agiFormula(φ2φ2φ2, c)

Y agiFormula(exists [−→v ] in F such φexists [−→v ] in F such φexists [−→v ] in F such φ, c) ≡ ∃−→v : −→v ∈ F ∧ Y agiFormula(φ[−→v ], c)

Y agiFormula(for [−→v ] in F such φfor [−→v ] in F such φfor [−→v ] in F such φ, c) ≡ ∀−→v : −→v ∈ F ∧ Y agiFormula(φ[−→v ], c)

Y agiFormula(F [
−→
ξ ]F [
−→
ξ ]F [
−→
ξ ], c) ≡ Y agiEval(

−→
ξ ) ∈ F

Y agiFormula(ξ1 == ξ2ξ1 == ξ2ξ1 == ξ2, c) ≡ Y agiEval(ξ1ξ1ξ1) = Y agiEval(ξ2ξ2ξ2)

Y agiFormula(ξ1 ! = ξ2ξ1 ! = ξ2ξ1 ! = ξ2, c) ≡ Y agiEval(ξ1ξ1ξ1) 6= Y agiEval(ξ2ξ2ξ2)

Y agiFormula(ξ1 > ξ2ξ1 > ξ2ξ1 > ξ2, c) ≡ Y agiEval(ξ1ξ1ξ1) > Y agiEval(ξ2ξ2ξ2)

Y agiFormula(ξ1 >= ξ2ξ1 >= ξ2ξ1 >= ξ2, c) ≡ Y agiEval(ξ1ξ1ξ1) ≥ Y agiEval(ξ2ξ2ξ2)

Y agiFormula(ξ1 <= ξ2ξ1 <= ξ2ξ1 <= ξ2, c) ≡ Y agiEval(ξ1ξ1ξ1) ≤ Y agiEval(ξ2ξ2ξ2)

Y agiFormula(ξ1 < ξ2ξ1 < ξ2ξ1 < ξ2, c) ≡ Y agiEval(ξ1ξ1ξ1) < Y agiEval(ξ2ξ2ξ2)

Y agiFormula(>>>, c) ≡ >
Y agiFormula(⊥⊥⊥, c) ≡ ⊥

The last case of Y agiFormula is responsible for handling expressions which evaluate to boolean values
by default, such as boolean literals or variable accesses.

6.2.3 Fluents

The current situation is represented by a fluent collection c, which consists of a fixed arbitrary number

of fluents
−→
F depending on the number of fluents declared in the YAGI program. Each fluent F has a

finite domain SnF , which can be an n-ary tuple of countable data types, such as ranged integers, enums
or booleans. The function translate(x, SiF ) takes a value and its data type and evaluates to an offset
between 0 and |SiF | − 1. For wildcards it evaluates to −1. Wildcards are not allowed for booleans, as
explained in Chapter 6.3.

translate(false, boolean) = 0

translate(true, boolean) = 1

translate( , int[x : y]) = −1

translate(i, int[x : y]) = i− x, x ≤ i ≤ y
translate(i, int[x : y]) = ⊥, i < x ∨ i > y

translate( , E) = −1

translate(e, E) = ordinal(e), e ∈ E
translate(e, E) = ⊥, e /∈ E

The function ordinal(e) takes a member e of the enum E and evaluates to its ordinal, i.e. the position
it was declared on in the enum declaration, starting with 0. There also exists an inverse function to
translate in the code, which is used when iterating over fluents.

Fluents and sets are internally represented as a bitmap BcF held by the fluent collection c. Each tuple of
values inside SnF maps to a position in the bitmap, pointing to a bit BcF (i). The length of the bitmap is
the product of the lengths of each domain type. Formally speaking, it is |B| =

∏n
i=1 |SiF |. The offset of
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a value tuple −→x n inside the bitmap can be formalized tail-recursively:

offset(−→x , SnF ) = offset0 (−→x , SnF , 0, |SnF |)
offset0 (−→x , SnF , i, 0) = i

offset0 (−→x , SnF , i, j) = offset0 (−→x , SnF , i · |S
j
F |+ translate(xj), j − 1)

Wildcards are treated by considering all possible values at their position.

Now we can put everything together to define when a fluent F with the domain SnF , represented by the
bitmap BcF holds for a given value tuple:

F (−→x , c)⇔ BcF (offset(−→x , SnF )) = 1

¬F (−→x , c)⇔ BcF (offset(−→x , SnF )) = 0

6.2.4 Actions

Because YAGI actions are rich in complex components such as conditionals, while loops, foreach loops and
deterministic pick statements, we will proceed to map YAGI actions to procedures and encode fluent mod-
ifications into primitive actions. A YAGI action A consists of a precondition ϕAP (A) and the action effects
δA. We introduce the function ActionToProc(δA) to convert the action effects to a procedure. An action
call A(−−→args) in a prodedure is subsequently mapped to the program ϕAP (A); ActionToProc(δA)[−−→args];.
Fluent modifications are delegated to the primitive actions addF (−→x ) and removeF (−→x ).

ActionToProc(φφφ) = φφφ

ActionToProc(α1; α2;α1; α2;α1; α2;) = ActionToProc(α1); ActionToProc(α2);

ActionToProc(if(φ) { α; }if(φ) { α; }if(φ) { α; }) = if(φ) { ActionToProc(α); }
ActionToProc(if(φ) { α1; } else { α2; }if(φ) { α1; } else { α2; }if(φ) { α1; } else { α2; }) = if(φ) { ActionToProc(α1); }

else { ActionToProc(α2); }
ActionToProc(while(φ) { α; }while(φ) { α; }while(φ) { α; }) = while(φ) { ActionToProc(α); }

ActionToProc(pick [−→v ] in F such φ; α;pick [−→v ] in F such φ; α;pick [−→v ] in F such φ; α;) = pick [−→v ] in F such φ; ActionToProc(α);

ActionToProc(for [−→v ] in F such φ; { α; }for [−→v ] in F such φ; { α; }for [−→v ] in F such φ; { α; }) = for [−→v ] in F such φ; { ActionToProc(α); };

ActionToProc(F = [−→x ];F = [−→x ];F = [−→x ];) = for [
−→
x′ ] in F such { removeF (

−→
x′ ); }; addF (−→x );

ActionToProc(F + = [−→x ];F + = [−→x ];F + = [−→x ];) = addF (−→x );

ActionToProc(F − = [−→x ];F − = [−→x ];F − = [−→x ];) = removeF (−→x );

ActionToProc(F + = S;F + = S;F + = S;) = for [−→x ] in S such { addF (−→x ); }
ActionToProc(F − = S;F − = S;F − = S;) = for [−→x ] in S such { removeF (−→x ); }
ActionToProc(F = S;F = S;F = S;) = for [−→x ] in F such { removeF (−→x ); };

ActionToProc(F + = S);

The effects of the actions addF (−→x ) and removeF (−→x ) can be easily modelled as Successor State Axioms,
as [Maier, 2015] describes. The action addF sets the fluent F to true for a single value tuple, while
removeF sets it to false.

F (−→x , do(a, s)) ≡ a = addF (−→x ) ∨ F (−→x , s) ∧ a 6= removeF (−→x )

Poss(addF (−→x ), s) ≡ >
Poss(removeF (−→x ), s) ≡ >

But because we use fluent collections and not situations in YAGI, we need to specify the effects of addF
and removeF for bitmaps. The function exec applies the action’s effects to the fluent collection c and
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gives an updated fluent collection c′:

exec(addF (−→x ), c) = c ∪BcF (offset(−→x , SnF ) ← 1) \BcF
exec(removeF (−→x ), c) = c ∪BcF (offset(−→x , SnF ) ← 0) \BcF

To put it in words, the function exec updates the bitmap BcF by setting a bit depending on the primitive
action and the value tuple −→x .

6.2.5 Control Flow

We have already outlined the semantics of IndiGolog in Chapter 3.3, which are based on the predicates
Trans and Final. Analougously [Maier, 2015] has introduced the predicates Y agiTrans(α, b, α′, b′) and
Y agiF inal(α, b), which take a Legacy YAGI program α and a fluent database b. They largely correspond
to the behavior of the two predicates in IndiGolog. For our new YAGI syntax, we need to slightly adapt
those predicates and add new rules for novelty features. As situations are stored differently in Legacy
YAGI, we use fluent collections instead of databases in our new definitions.

• An empty program can’t transition into a new program, but is allowed to terminate:

Y agiTrans(εεε, , , ) ≡ ⊥
Y agiF inal(εεε, ) ≡ >

• Primitive actions (addF and removeF ) are always possible and therefore there’s no need to check
their precondition. We use the function exec to update the fluent collection:

Y agiTrans(a(−−→args);a(−−→args);a(−−→args);, c, ε, c′) ≡ c′ = exec(a(−−→args), c)
Y agiF inal(a(−−→args);a(−−→args);a(−−→args);, ) ≡ ⊥

• Test action:

Y agiTrans(φ;φ;φ;, c, ε, c) ≡ Y agiFormula(φ, c)

Y agiF inal(φ;φ;φ;, ) ≡ ⊥

• Sequential execution of statements:

Y agiTrans(α1; α2;α1; α2;α1; α2;, c, α′, c′) ≡ (∃γ : α′ = (γ;α2) ∧ Y agiTrans(α1, c, γ, c
′))

∨ Y agiF inal(α1, c) ∧ Y agiTrans(α2, c, α
′, c′)

Y agiF inal(α1; α2;α1; α2;α1; α2;, c) ≡ Y agiF inal(α1, c) ∧ Y agiF inal(α2, c)

• Nondeterministic branching:

Y agiTrans(choose {α1; } or {α2; }choose {α1; } or {α2; }choose {α1; } or {α2; }, c, α′, c′) ≡ Y agiTrans(α1, c, α
′, c′) ∨ Y agiTrans(α2, c, α

′, c′)

Y agiF inal(choose {α1; } or {α2; }choose {α1; } or {α2; }choose {α1; } or {α2; }, c) ≡ Y agiF inal(α1, c) ∨ Y agiF inal(α2, c)

• Nondeterministic choice of arguments can come with a filtering condition φ, so that pick delivers
better results in online execution mode:

Y agiTrans(pick [−→v ] in F ; α;pick [−→v ] in F ; α;pick [−→v ] in F ; α;, c, α′, c′) ≡ ∃−→v : −→v ∈ F ∧ Y agiTrans(α[−→v , c], c, α′, c′)
Y agiF inal(pick [−→v ] in F ; α;pick [−→v ] in F ; α;pick [−→v ] in F ; α;, c) ≡ ∃−→v : −→v ∈ F ∧ Y agiF inal(α[−→v , c], c, α′, c′)

Y agiTrans(pick [−→v ] in F such φ; α;pick [−→v ] in F such φ; α;pick [−→v ] in F such φ; α;, c, α′, c′) ≡ ∃−→v : −→v ∈ F ∧ Y agiFormula(φ[−→v ], c)

∧ Y agiTrans(α[−→v , c], c, α′, c′)
Y agiF inal(pick [−→v ] in F such φ; α;pick [−→v ] in F such φ; α;pick [−→v ] in F such φ; α;, c) ≡ ∃−→v : −→v ∈ F ∧ Y agiFormula(φ[−→v ], c)

∧ Y agiF inal(α[−→v , c], c, α′, c′)
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• Conditionals:

Y agiTrans(if(φ) {α; }if(φ) {α; }if(φ) {α; }, c, α′, c′) ≡ Y agiFormula(φ, c) ∧ Y agiTrans(α, c, α′, c′)
∨ ¬Y agiFormula(φ, c) ∧ c = c′ ∧ α′ = ε

Y agiF inal(if(φ) {α; }if(φ) {α; }if(φ) {α; }, c) ≡ Y agiFormula(φ, c)→ Y agiF inal(α, c)

Y agiTrans(if(φ) {α1; } else {α2; }if(φ) {α1; } else {α2; }if(φ) {α1; } else {α2; }, c, α′, c′) ≡ Y agiFormula(φ, c) ∧ Y agiTrans(α1, c, α
′, c′)

∨ ¬Y agiFormula(φ, c) ∧ Y agiTrans(α2, c, α
′, c′)

Y agiF inal(if(φ) {α1; } else {α2; }if(φ) {α1; } else {α2; }if(φ) {α1; } else {α2; }, c) ≡ Y agiFormula(φ, c) ∧ Y agiF inal(α1, c)

∨ ¬Y agiFormula(φ, c) ∧ Y agiF inal(α2, c)

• While loops:

Y agiTrans(while(φ) {α; }while(φ) {α; }while(φ) {α; }, c, α′, c′) ≡ (∃γ : α′ = (γ; while(φ) {α; }) ∧ Y agiTrans(α, c, γ, c′))
Y agiF inal(while(φ) {α; }while(φ) {α; }while(φ) {α; }, c) ≡ ¬Y agiFormula(φ, c) ∧ Y agiF inal(α, c)

6.2.6 Foreach loops

Foreach loops with side effects such as assignments or action calls in their body must be mapped to while
loops on a semantical level. The set to be iterated over is stored in a variable and a while loop iterates
until no more elements are left in the set. Each iteration a tuple is picked, the body of the foreach
loop gets executed and the picked tuple gets removed from the set. To illustrate this more clearly, the
expression

for [$var1, $var2] in S such { α; }

gets translated to:

$set = S;

while($set[_, _]) {
pick [$var1, $var2] in $set;

α;
$set -= [$var1, $var2];

}

6.2.7 Assignment

In contrast to Legacy YAGI it is possible to assign and reassign values to local variables. Variable
accesses can be formalized by rewriting the syntax representation of a variable access $var to $var[x],
where x is the value currently assigned to the variable. So for a variable access Y agiEval can be defined
as:

Y agiEval($var[x]$var[x]$var[x]) ≡ x

The assignment operator = can be defined using transition semantics. If the right hand side of the as-
signment evaluates to x′, all references of the variable $var[x] are replaced with $var[x′] in the remaining
program:

Y agiTrans($var = ξ; δ;$var = ξ; δ;$var = ξ; δ;, c, δ′, c) ≡ Y agiTrans(δ[var|Y agiEval(ξ)], c, δ′, c′)
Y agiF inal($var = ξ; δ;$var = ξ; δ;$var = ξ; δ;, c) ≡ Y agiF inal(δ[var|Y agiEval(ξ)], c)

6.2.8 Procedures

As discussed in Chapter 3.2.10, traditional Golog uses marco-expansion to handle procedure calls, which
disallows recursive calls. In both YAGI and Legacy YAGI, procedures are executed the same way as
in procedural programming languages. Before entering the procedure, the argument expressions are
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evaluated and their values, including the current fluent collection, are passed to a new environment. The
called procedure is then executed in this environment and the resulting fluent collection is then passed
up to the calling procedure.
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6.3 Implementation Details

In this chapter we will explain the components of the YAGI Library, how a YAGI program is compiled
and typechecked. Furthermore we will give instructions on how the controller can be set up and we will
describe how a YAGI program is executed at runtime.

6.3.1 Compiler Workflow

At first we start with a YAGI program given as one or more text files. The Q3 function compileYagiFile

loads a YAGI file and attempts to compile it. As described below, it returns a Loader and a compilation
log. The following simplified Q3 program compiles a YAGI program and saves the result as a Q3
Executable File (.q3x):

# compileYagiFile(source file, program name, verbose compiler output)
[@loader, @error] = compileYagiFile(File("myProgram.yagi"), "YagiWorld", false);
println(error);
if (loader) {
loader.save(File("myProgram.q3x"));
println("Compiled successfully and saved to file!");

} else {
println("Compilation failed!");

}

Includer

The includer, which is located in the Java class at.tugraz.yagi.compiler.Includer, is defined recur-
sively:

• Load a code file

• Generate its abstract syntax tree (AST)

• Check the AST for include-statements

• Add all non-include declarations to the global scope

• Do the same for all included files

• Throw an error when a file is included twice or a cycle is detected

Tokenizer

In the beginning the code goes through the tokenizer (at.tugraz.yagi.compiler.tokenizer.Tokenizer),
which is implemented as a state machine that scans a string character by character. It removes comments,
parses operators, integers, strings and annotates them with the line they’re on. The code snippet

proc main(){ # mitochondria is the powerhouse of the cell
foo(123
+ "abc");

}

is translated to:

1 - Keyword - PROC

1 - Identifier - main

1 - Operator - (

1 - Operator - )

1 - Operator - {
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2 - Identifier - foo

2 - Operator - (

2 - TokenInteger - 123

3 - Operator - +

3 - Text - abc

3 - Operator - )

3 - Operator - ;

4 - Operator - }

Brace Resolver

The brace resolver (at.tugraz.yagi.compiler.tokenizer.BraceResolver) scans all braces in the to-
ken sequence generated by the tokenizer and checks for the correctness of the braces. It outputs a tree
of tokens containing each pair of braces. The token sequence (at.tugraz.yagi.compiler.TokenSeq)
above is translated into the following token tree:

1 - Keyword - PROC

1 - Identifier - main

1 - BlockRound(

)

1 - BlockCurly(

2 - Identifier - foo

2 - BlockRound(

2 - TokenInteger - 123

3 - Operator - +

3 - Text - abc

)

3 - Operator - ;

)

This technique makes it easy to keep track of line numbers and to parse declarations in parallel, but a
drawback is that < > can’t be used as a brace and comparison operator at the same time.

Parser

The parser (at.tugraz.yagi.compiler.Parser) converts the token tree into an AST and also checks
for the validity of the grammar. Expressions aren’t parsed by scanning left to right, but by recursively
splitting the sequence along operators like ;, , or +. Just like the tokens, the AST also keeps track of
line numbers. The example above translates to:

NodeGlobal

NodeProc main()

NodeBlock

NodeProcCall foo

NodeAdd

NodeConst(123) NodeConst(”abc”)
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At this point, syntactical correctness of the YAGI program is already guaranteed. All grammar and
parsing related logic is implemented in the aforementioned Parser-class, where each grammar rule has
its own static method. The class TokenSeq contains methods used to split a token sequence into further
sequences or to read individual tokens.

The parser recursively builds up the final AST, which is represented by the classes found in the packages
at.tugraz.yagi.compiler.ast.*. Each AST class is derived from at.tugraz.yagi.compiler.ast.Node.
The latter class provides functionality for storing line numbers, typechecking each node and compiling
them to bytecode. The class at.tugraz.yagi.compiler.ast.ParseTree represents the root of the
AST.

Typechecker

The AST is then walked by the static typechecker by calling the method
Type at.tugraz.yagi.compiler.ast.Node.typecheck(Environment, Context)

recursively. For each node it checks if the node is used in a plausible context and infers the return type
of the node. The typechecker has a great number of responsibilities:

• Declarations such as fluents, procedures or actions are extracted from the AST and it is ensured
that no name collisions occur.

• Each node in the AST is recursively annotated with the type it evaluates to. For example,
NodeAdd(NodeConst(123), NodeConst("abc")) evaluates to a string, while its child nodes eval-
uate to an integer and a string respectively.

• Ranges of integers are checked. If $x is of the type int[2:4], then $x * 2 will be of the type
int[4:8].

• The presence of all referenced fluents, procedures, actions and other declarations is checked. The
given argument types must match the declared parameter types.

• Local variables are kept track of. This concerns their type and scope of visibility throughout the
control flow. Variables declared inside a block can’t be accessed outside of it. For example, the
variable $num in the program $num; if($cond) { $num = 1;} else { $num = 2; } will have
the type int[1:2] after the if-else statement. A warning is printed if a variable remains unused
after it has been assigned a value.

• Stack offsets are assigned to each local variable. While offset 0 stores the current situation, the
parameters are placed beginning at offset 1 and then local variables follow. Two variables can have
the same offset if they lie within different scopes. For example in if($cond) { $a = true; }

else { $b = 1; } both $a and $b will be assigned the same offset.

• The legality of certain constructs in the current context is checked. For example, it must be ensured
that fluents can only be modified inside the do-block of actions or that procedures can only be called
inside other procedures.

A weakness of the typechecker is that it can’t infer integer ranges in loops correctly, because in order to
accomplish that, one would have to execute the whole program symbolically, which would be equivalent
to solving the halting problem. The typechecker is good enough to prevent user-induced runtime errors
from occuring. If a runtime error happens though, it is either a bug of the YAGI compiler, the Q3M or
the wrapper script.

Bytecode Compiler

Eventually the type annotated AST is compiled into Q3 bytecode.
The class at.tugraz.yagi.compiler.bytecode.BytecodeCompiler calls
the method void at.tugraz.yagi.compiler.ast.Node.compile(InstList, boolean),
which itself calls itself recursively and each Node adds a few instructions to the InstList passed around.
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The boolean flag tells if the AST should be compiled with or without search semantics. In addition to
compiling user defined functions, the bytecode compiler generates a variety of additional functions and
classes necessary for searching, signal handling.

The AST above compiles to the following:

$YagiWorld.main(situation):

extraParam= paramc=1 foreignc=0

[situation]

> 0 2 STR "foo"

> 1 2 GET

> 2 2 LOAD 0

> 3 2 INT <123>

> 4 3 STR "abc"

> 5 3 ADD

> 6 2 CALL 2

> 7 2 STORE 0

> 8 1 GOTONULL 9

> 9 1 LOAD 0

> 10 1 RETURN

As the bytecode snippet shows, procedures and actions always take the current situation as first parameter
and keep it on local variable offset 0. In the end either the resulting situation is returned or null is
returned upon failure.

The example below illustrates how the statement someFluent += [Color.RED, $num + 3]; is compiled
to bytecode, where $num is stored on local variable offset 1:

> 7 20 LOAD 0 # push current situation to stack

> 8 20 STR "someFluent"

> 9 20 MEMBER # get fluent "someFluent" of situation

> 10 20 STR "value"

> 11 20 MEMBERV # get a reference to the member variable "value"

> 12 20 STR "Color"

> 13 20 GET # push the enum "Color" to stack

> 14 20 STR "RED"

> 15 20 MEMBER # get enum constant "RED"

> 16 20 LOAD 1 # push local variable $num to stack

> 17 20 INT <3> # push integer constant 3 to stack

> 18 20 ADD # add $num and 3.

> 19 20 TUPLE 2 # create a binary tuple containing

# the enum constant and the computed number

> 20 20 A_ADD # add the tuple to the fluent

6.3.2 The YAGI Library

All functionality of YAGI is contained in the YAGI Library. It fits into a single JAR file, which serves as
library for the Q3M. It contains the YAGI compiler as described above and a few functions and classes,
which are accessible in Q3 and are needed to execute a YAGI program.

Library Functions

The YAGI Library contains a few primitive helper functions:

• yagiRndBoolean() - Returns a pseudo-random boolean. Used for deciding which branch of a
binary choose statement is entered in online execution mode.
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• yagiRndInt(upperBound) - Returns a pseudo-random integer from 0 (inclusive) to upperBound

(exclusive). Used for deciding which branch of an n-ary choose statement is entered in online
execution mode.

• clamp(i, min, max) - Returns Math.max(min, Math.min(max, i)). Used to cast integers.

• compileYagiFile(source file, program name, verbose compiler output) - Loads a YAGI
program file and tries to compile it. It returns a Loader containing the compiled functions and a
string containing potential error messages. If the compilation fails, the returned Loader is null.

Tuples and Wildcards

Tuples in YAGI are simply ordinary Q3 tuples of integers and enum values. Wildcards are simply encoded
as null. For integers this is no problem, because 0 != null in the Q3 type system. However, booleans
are represented by true and null in both Q3 and the YAGI backend, because false is the same as null
in Q3. For this reason, wildcards are disallowed in place of booleans.

YagiSet

The class at.tugraz.yagi.lib.set.YagiSet, known as YagiSet within Q3, is the universal data struc-
ture for facts, fluents and sets in general. It wraps around an instance of long[] and supports Copy-
On-Write (COW). An instance of YagiSet can be copied while retaining its original data array. Only if
one of either the parent or child is modified, the array is actually copied. This feature saves memory
when many copies of situations and fluents must be made in search mode. The YagiSet can be modified
in the following ways within Q3:

• set = YagiSet([Color, IntRange(0, 3)], [Color.RED, 0], [Color.GREEN, 3]) creates a set
containing two tuples, which is equivalent to set = {[Color.RED, 0], [Color.GREEN, 3]} in
YAGI.

• +set overloads the unary prefix + operator and evaluates to a COW copy of this set.

• -set overloads the unary prefix - operator and returns the complement regarding the set’s domain.
This corresponds to the ! operator for sets in YAGI.

• /set overloads the unary prefix / operator and returns an iterator over all elements of this set.

• set.value = source deletes all elements from this set and adds all elements from the set on the
right hand side (rhs). The rhs can also be a single tuple for all assignment operators.

• set.value += source adds all elements from the rhs to this set.

• set.value -= source removes all elements contained in the set on the rhs from this set.

• set.value &= source removes all elements from this set that are not contained in the set on the
rhs.

• set[tuple] returns an iterator over all elements in this set matching the given tuple. If the tuple
is null, an unfiltered iterator is returned.

• set.clear() removes all elements from this set. Is equivalent to set.value = [].

The long[] inside the YagiSet is an array of 64bit integers, where each bit represents a possible tuple
stored in the set. If a bit is set, the tuple is present and otherwise it’s absent. The size of the array
corresponds to the size of the set’s domain. For sets with small domains or densely populated sets, a
bitmap is actually a more memory efficient solution that storing all present tuples in a list. Another
advantage is that membership queries are O(1).
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Domain
The class at.tugraz.yagi.lib.domain.Domain, known as Domain within Q3, functions the same as a
fully populated set. In contrast to YagiSet, a Domain is immutable and acts as if it contains all possible
tuples of its domain, so there’s no need to store them explicitly. The only thing that needs to be stored
are the types making up the domain. The class is used when quantifying over domains, such as in for

[$color, $num] in [Color, int[0:3]] such {. A Domain can be used in the following ways within
Q3:

• domain = Domain(Color, IntRange(0, 3))

• /domain overloads the unary prefix / operator and returns an iterator over all elements of this
domain.

• domain[tuple] returns an iterator over all elements in this domain matching the given tuple. If
the tuple is null, an unfiltered iterator is returned.

Iterators
The class at.tugraz.yagi.lib.YagiIterator, known as YagiIterator within Q3, represents an iter-
ator over a set or a domain. Iterators in YAGI enumerate elements in a pseudorandom order, so that
pick always returns a random value from the set. Unlike a regular iterator that implements the methods
hasNext and next, a YagiIterator overloads two operators:

• +iterator advances this iterator to the next element and returns it. An iterator is initially set
before the first element. If no more elements are available, null is returned.

• /iterator returns this iterator without modifying it.

To summarize the explanations above, +/set returns a random set member and if set is empty, it
returns null. +set[tuple] is null, if tuple is not contained within the set and returns a random tuple
matching tuple otherwise. Please note that unary operators such as + or / are right-associative.

6.3.3 The YagiWorld Class

The YAGI compiler generates a Loader containing one Q3 class called YagiWorld. It contains the
following methods and member variables:

• The constructor of YagiWorld, which is called new as mandated by Q3. It initializes all facts and
the initial situation(s).

• The initial situation(s) as member variables.

• All facts, which are instances of YagiSet.

• All procedures and actions as methods. Each of these take the current situation as their first
parameter and return the resulting situation on success and null on failure.

• All procedures and actions compiled with search semantics.

• All sensing and signal handlers as member variables, which are initialized with null. Functions
are supposed to be assigned to these variables, so procedures and actions can later call them.

• All enums.

• Various helper functions:

– The method startYagiSearch, along with the helper function startYagiSearch$1 nests all
emerging search branches and waits for a result. More details to these functions are provided
below.

– flushSignals is called after searching and executes all signals in the signal buffer of the
resulting situation.

– init$S0 is called by the constructor to initialize the initial situation.
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– createSituation creates a new situation from scratch and initializes all fluents as empty
sets.

– signalNames, senseNames and fluentNames are Lists containing the names of the respective
declarations.

Situation Class
The YagiWorld class contains a nested class called Situation, whose instances represent situations, such
as the initial situation or a situation emerging from a sequence of actions. It has the following methods
and member variables:

• A constructor that initializes all fluents with null.

• All fluents as instances of YagiSet.

• The member variables taskCount and signals, which are needed for searching.

• The method copy() that returns a copy of this situation with all fluents set to COW.

6.3.4 Implementation of Search

Each search branch is executed by a separate task, all of which are in turn handled by a single thread
as described in Chapter 3.4. As mentioned above, each procedure and action is compiled twice. In
one version normal online semantics are applied and in the other one online semantics are used. The
following differences apply between these two:

• Online: Signals are executed directly after an action has been called. Offline: Signals are written
into the signal buffer of the current situation object. The current task yields to the next task in
the scheduler queue and pushes itself to the end of the queue.

• Online: Sensing calls are performed normally. Offline: A runtime error is thrown, because sensing
is not yet supported while searching.

• Online: choose picks a random branch and executes it no matter if it succeeds or fails. Offline: For
each branch, a new task is forked, which executes the respective branch and everything afterwards.
A COW copy of the current situation is created. These resulting tasks are pushed to the end of
the scheduler queue.

• Online: pick picks the first match it finds. Offline: The current task iterates through all results
and forks a new task with a COW copy of the current situation for each result, which is likewise
pushed to the end of the scheduler queue. The current task dies for sake of simplicity.

• All function calls (such as procedures and actions) go to functions compiled with the same seman-
tics.

• Online: After a successful search, the signal buffer is executed and flushed. Offline: The signal
buffer of the resulting situation is written in the one of the current situation.

When starting a search in online semantics or a nested search in offline semantics, the current task T1
creates a new child task T2, which executes the function startYagiSearch. T1 waits for T2 to finish.
The procedure P to be executed and its arguments are passed to startYagiSearch as arguments.

T2 also spawns a child task T3, which executes startYagiSearch$1 and the actual procedure. T3 may
spawn further tasks when making non-deterministic decisions. T2 waits for two possible outcomes. The
search succeeds if one task signals that it has found a result, i.e. P has returned a valid situation. Then
T2 terminates and automatically kills all of its children, which are the remaining search branches. The
outcome is passed on to T1. The search fails if T3 and all of its children fail, i.e. they return null. Then
T2 also terminates, which in turn causes the function executed by T1 to return null.

This implementation behaves similar to a classical breadth-first-search (BFS). Each depth level roughly
corresponds to one action or decision taken. The clear advantages of BFS are that it always terminates
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if there exists a solution and that the resulting action sequence is of optimal length. A disadvantage is
that it can be comparatively slow if the branch factor is large and because each search branch must be
kept in memory.
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7 Evaluation

In this chapter we want to demonstrate the capabilities of our implementation of YAGI by comparing it
with Legacy YAGI and Golog regardings its performance and reliability. We proceed by discussing some
more example domains and illustrating how YAGI is used for solving planning problems in these domains.
Finally, we show how YAGI has already been used by university students in educational settings.

7.1 Comparison with Legacy YAGI

Because YAGI is a reimplementation of Legacy YAGI with new features added, we want to measure how
much of an improvement our reimplementation is. The performance of Legacy YAGI has already been
compared against Golog by [Maier, 2015] using the two domains Elevator Controller and Blocks World.
He proceeded by randomly generating test scenarios with varying difficulty and measuring the execution
time and success rate of both the implementation in Legacy YAGI as well as the Golog version.

Thus we proceed by implementing those same two domains in YAGI and by using the same test scenarios
used by [Maier, 2015]. A Q3 script is written for each domain that handles the compilation of the code
and its execution. The code is compiled once at the beginning before executing any tests. The script
takes a handful of test scenarios and generates randomized starting situations. The YAGI program is
then run n times, with each test using a new situation. A test taking longer than 10 seconds results
in a timeout. The execution time of each test is measured in nanoseconds, as well as if the program
finds a valid action sequence to the problem or if it fails. These measurements are then statistically
evaluated for each scenario, yielding the mean execution time tµ[ms], its standard deviation tσ[ms], the
shortest execution time tmin[ms] and the longest time tmax[ms]. Only tests not running into a timeout
are considered here. The success rate succ[%] tells how many of the total tests yielded a valid solution.
The timeout rate to[%] says how many test runs timed out.

Additionally, each domain is executed in four different ways, as already conducted by [Maier, 2015]:

1. Non-deterministic, no Planning: The non-deterministic control structures pick and choose

are used in online execution mode. This means that only one path is chosen randomly when a
planning decision has to be made. If that decision was wrong, the program fails. A valid solution
may only be found by chance.

2. Conditional, no planning: if-statements are used to mitigate any violations of preconditions,
so that the program can never fail, but termination is not guaranteed. If a solution is found, it
may not be the shortest sequence of actions. The whole program is executed in online mode.

3. Non-deterministic, planning: The program is identical to the first one, except that it is executed
in offline mode. If a decision has to be made, all possibilities are tried simultaneously. It doesn’t
matter if a single execution path fails.

4. Conditional, planning: The program is identical to the second one, except that it is executed
in offline mode. No execution path can ever fail.

The same evaluation methodology is used for the domains implemented in Legacy YAGI and Golog,
which is encoded as a Prolog program. Because of hardware differences, the results from [Maier, 2015]
can’t be used for a fair comparison. Timeouts are set to 120s for Legacy YAGI programs and to 5s
for Golog programs, because they finish very quickly in case they terminate. [Maier, 2015] also tested
two additional variants of the Golog program, but we left those out because they didn’t behave very
differently from the original Golog program.

While the Legacy YAGI interpreter is written in C++ and is thus optimized at compile-time, the perfor-
mance remains constant with increasing runtime. Due to the fact that all YAGI testcases are executed in
the same JVM instance and test programs are executed thousandfold, the JVM can make some runtime
optimizations, which increases the performance as time passes. This means that simple tests must be
run very often until JVM warmup becomes negligible.
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7.1.1 Elevator Controller

The elevator controller domain, as illustrated in Figure 3, was used as a popular example by [Reiter,
2001] and adapted by [Maier, 2015] for benchmarking purposes. An elevator can move between f floors
through the actions up(i) and down(i), where the elevator ”teleports” to the given floor i, with no
regard to the distance to be covered. Furthermore it can open and close its door with open() and close()
respectively. In the initial situation, there are persons waiting to be picked up on r floors. If a floor is
reached, the request is turned off with turnoff(i). The planning goal is to visit all these requested floors
no matter the order of visits.

Figure 3: The elevator domain with its actions and fluents in an example scenario.

We proceed by implementing the domain described above in YAGI and by randomly distributing the
r requests across the f floors, while variating f and r with each scenario. The source code of our
implementation can be found in appendix A.1. The test results are shown in the Tables 1, 2, 3, 4 and 5.

f = 7, r = 2
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.1 0.2 0.05 7 9 0
YAGI (cond., no plan.) 1000 0.07 0.03 0.03 0.2 100 0
YAGI (non-det., plan.) 1000 0.3 0.2 0.1 7.7 100 0
YAGI (cond., plan.) 1000 0.2 0.4 0.1 13 100 0
Legacy YAGI (non-det., no plan.) 20 4.5 2.3 2 11 10 0
Legacy YAGI (cond., no plan.) 20 8 2 6 14 100 0
Legacy YAGI (non-det., plan.) 20 662 24 608 708 100 0
Legacy YAGI (cond., plan.) 20 203 19 157 220 100 0
Golog 20 0.08 0.02 0.06 0.1 100 0

Table 1: Results for the elevator controller test scenario f = 7, r = 2
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f = 20, r = 10
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.04 0.01 0.02 0.1 0 0
YAGI (cond., no plan.) 1000 0.09 0.03 0.06 0.2 100 0
YAGI (non-det., plan.) 10 - - - - 0 100
YAGI (cond., plan.) 10 - - - - 0 100
Legacy YAGI (non-det., no plan.) 20 8.3 3.8 4 15 0 0
Legacy YAGI (cond., no plan.) 20 38 3.5 30 45 100 0
Legacy YAGI (non-det., plan.) 20 - - - - 0 100
Legacy YAGI (cond., plan.) 20 2728 74 2534 2862 100 0
Golog 20 0.8 0.1 0.8 1.5 100 0

Table 2: Results for the elevator controller test scenario f = 20, r = 10

f = 50, r = 25
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.02 0.007 0.01 0.1 0 0
YAGI (cond., no plan.) 1000 0.1 0.01 0.1 0.2 100 0
YAGI (non-det., plan.) 10 - - - - 0 100
YAGI (cond., plan.) 10 - - - - 0 100
Legacy YAGI (non-det., no plan.) 20 18 8.8 7 49 0 0
Legacy YAGI (cond., no plan.) 20 176 17 145 214 100 0
Legacy YAGI (non-det., plan.) 20 - - - - 0 100
Legacy YAGI (cond., plan.) 20 15757 459 14632 16582 100 0
Golog 20 8.8 0.7 8 10 100 0

Table 3: Results for the elevator controller test scenario f = 50, r = 25

f = 70, r = 60
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.1 0.1 0.04 1.3 0 0
YAGI (cond., no plan.) 1000 0.3 0.1 0.2 3.2 100 0
YAGI (non-det., plan.) 10 - - - - 0 100
YAGI (cond., plan.) 10 - - - - 0 100
Legacy YAGI (non-det., no plan.) 20 28 11 13 59 0 0
Legacy YAGI (cond., no plan.) 20 518 16 487 561 100 0
Legacy YAGI (non-det., plan.) 20 - - - - 0 100
Legacy YAGI (cond., plan.) 20 - - - - 0 100
Golog 20 124 6.8 120 152 100 0

Table 4: Results for the elevator controller test scenario f = 70, r = 60
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f = 100, r = 100
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.02 0.008 0.01 0.1 0 0
YAGI (cond., no plan.) 1000 0.4 0.02 0.4 0.6 100 0
YAGI (non-det., plan.) 10 - - - - 0 100
YAGI (cond., plan.) 10 - - - - 0 100
Legacy YAGI (non-det., no plan.) 20 41 12 25 72 0 0
Legacy YAGI (cond., no plan.) 20 1218 20 1195 1260 100 0
Legacy YAGI (non-det., plan.) 20 - - - - 0 100
Legacy YAGI (cond., plan.) 20 - - - - 0 100
Golog 20 752 50 554 834 100 0

Table 5: Results for the elevator controller test scenario f = 100, r = 100

7.1.2 Blocks World

The blocks world [Nilsson, 1982] is another famous planning problem, where there are a total of b blocks
available, which can be stacked on top of each other, as shown in Figure 4. At most one block fits on
top of another block. Only the uppermost block on a stack can be moved. A block x sitting on top of
another block can be put on the table using the action putOnTable(x), which creates a new stack. It is
also allowed to move a block x on top of another block y with the action stackBlocks(x, y). The initial
situation starts with b blocks, which are randomly stacked to make s stacks. Our planning goal is to
have block 0 stacked on top of block 1.

Figure 4: An example scenario of the blocks world domain with 7 blocks and 4 stacks. Two possible
actions are indicated by arrows. The fluent values for this situation are given on the top right.

Similar to the elevator controller domain, the blocks world domain is implemented in YAGI and test
scenarios with differend b and s are applied. The source code can be found in appendix A.2. The test
results are shown in the Tables 6, 7, 8, 9 and 10.
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b = 4, s = 1
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.1 0.1 0.04 4 24 0
YAGI (cond., no plan.) 1000 0.1 0.2 0.02 5.6 100 0
YAGI (non-det., plan.) 1000 0.7 1.2 0.03 24 100 0
YAGI (cond., plan.) 100 51 64 0.04 258 100 0
Legacy YAGI (non-det., no plan.) 20 4.3 1.4 3 7 10 0
Legacy YAGI (cond., no plan.) 20 27 30 5 118 100 0
Legacy YAGI (non-det., plan.) 20 10267 14488 155 38527 100 0
Legacy YAGI (cond., plan.) 20 9216 15713 256 46735 65 35
Golog 20 0.05 0.03 0.02 0.1 60 40

Table 6: Results for the blocks world test scenario b = 4, s = 1

b = 5, s = 1
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.02 0.01 0.01 0.1 22 0
YAGI (cond., no plan.) 1000 0.1 0.1 0.01 1.5 100 0
YAGI (non-det., plan.) 1000 2.3 6.9 0.03 153 100 0
YAGI (cond., plan.) 100 566 783 0.03 2958 100 0
Legacy YAGI (non-det., no plan.) 20 6.4 4.3 3 20 5 0
Legacy YAGI (cond., no plan.) 20 41 55 5 231 100 0
Legacy YAGI (non-det., plan.) 20 13769 16642 156 37771 70 30
Legacy YAGI (cond., plan.) 20 23636 21649 260 47842 95 5
Golog 20 0.06 0.03 0.02 0.1 60 40

Table 7: Results for the blocks world test scenario b = 5, s = 1

b = 6, s = 3
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.02 0.009 0.01 0.09 11 0
YAGI (cond., no plan.) 1000 0.2 0.2 0.01 2.1 100 0
YAGI (non-det., plan.) 1000 4.2 13 0.03 409 100 0
YAGI (cond., plan.) 30 156 268 0.05 909 100 0
Legacy YAGI (non-det., no plan.) 20 7.6 4.4 3 18 15 0
Legacy YAGI (cond., no plan.) 20 87 159 5 655 100 0
Legacy YAGI (non-det., plan.) 20 22709 26610 1963 86701 75 25
Legacy YAGI (cond., plan.) 20 9149 9082 1712 26652 70 30
Golog 20 0.06 0.02 0.02 0.1 60 40

Table 8: Results for the blocks world test scenario b = 6, s = 3
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b = 10, s = 1
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.1 0.1 0.04 3.6 8 0
YAGI (cond., no plan.) 1000 0.8 0.9 0.02 8.8 100 0
YAGI (non-det., plan.) 100 1396 1946 0.06 6195 100 0
YAGI (cond., plan.) 10 1484 0 1484 1484 10 90
Legacy YAGI (non-det., no plan.) 20 6.5 3.1 3 14 5 0
Legacy YAGI (cond., no plan.) 20 492 1217 8 5647 100 0
Legacy YAGI (non-det., plan.) 20 1183 1580 159 4675 30 70
Legacy YAGI (cond., plan.) 20 2168 2657 261 7979 30 70
Golog 20 0.1 0.07 0.02 0.2 60 40

Table 9: Results for the blocks world test scenario b = 10, s = 1

b = 10, s = 5
Program n tµ[ms] tσ[ms] tmin[ms] tmax[ms] succ[%] to[%]
YAGI (non-det., no plan.) 1000 0.04 0.03 0.01 0.7 6 0
YAGI (cond., no plan.) 1000 6.3 176 0.01 5581 100 0
YAGI (non-det., plan.) 100 56 134 0.06 701 100 0
YAGI (cond., plan.) 10 1937 3698 6.2 9329 50 50
Legacy YAGI (non-det., no plan.) 20 15 9.7 4 43 10 0
Legacy YAGI (cond., no plan.) 20 200 305 12 1050 100 0
Legacy YAGI (non-det., plan.) 20 29272 19790 9071 60253 30 70
Legacy YAGI (cond., plan.) 20 31458 37701 3865 98606 55 45
Golog 20 0.09 0.04 0.03 0.1 55 45

Table 10: Results for the blocks world test scenario b = 10, s = 5

7.1.3 Discussion

The results show that YAGI vastly outperforms Legacy YAGI regarding runtime. It is also more reliable
than Golog regarding timeout rates in the blocks world domain. The advantage against Legacy YAGI
might result from the use of more efficient data structures for fluents and from the single-threaded
implementation of our search algorithm. While Legacy YAGI is entirely string-based, YAGI supports
enum constants and integers, which also take less memory to store.

Elevator Controller
The elevator controller problem was specifically selected for this evaluation, because it is a planning
problem whose search tree grows by O(n!) and because all valid execution paths end on the same level
of the search tree. Golog uses a depth-first search (DFS) algorithm, so the tree is descended in O(n)
and a solution is always found for this domain. Both YAGI and Legacy YAGI however use breath-first
search (BFS), meaning that the whole search tree has to be traversed level by level until the last level
is reached. This results in the massive performance difference between Golog and YAGI when using full
planning and the large timeout rate in YAGI (non-det., plan.) and YAGI (cond., plan.). Because requests
can also be processed iteratively, YAGI (cond., no plan.) outperforms Golog in all elevator controller
scenarios. tµ[ms] lies relatively close to tmin[ms] and tσ[ms] is comparatively small, which indicates that
large spikes in the execution times are rare. Those spikes might come from JVM warmup or garbage
collection. YAGI (non-det., no plan.) barely finds a solution, because according to the program code,
the chance of success lies at 3−r with r requests.

Blocks World
Finding a sequence of moves to stack a specific block on top of another requires a different planning
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strategy than randomly picking requests and answering them. Golog finds a solution very quickly in
about half of the cases, but in the other half it doesn’t terminate at all. Its DFS algorithm might
repeatedly apply an action followed by an action reversing the previous action, so the searching scope
is trapped between a few states. While YAGI (non-det., no plan.) only finds a solution by chance by
applying purely random actions, YAGI (cond., no plan.) only applies random actions that are suitable, so
action preconditions and test actions are never violated and thus the program never fails. This behavior
is comparable to the sorting algorithm Bogosort [Gruber et al., 2007], where a list is randomly shuffled
until it is sorted. The program can in theory take arbitrarily long for any given input to terminate,
which results in the high tmax[ms] values in our results. YAGI (non-det., plan.) yields the most suitable
results, because it is expected to give a relatively short action sequence and is sufficiently fast. YAGI
(cond., plan.) takes longer and times out more often, because search branches can’t fail and so the search
tree gets flooded with equivalent branches. The large values of tmax[ms] and tσ[ms] might be due to
corner cases where the target block lies at the bottom of a large stack.
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7.2 Example Programs

Aside from the two domains used above for comparison with Legacy YAGI, we proceed by giving some
more example programs to show how planning problems can be solved in YAGI and how well the four
modes of operation discussed perform in each problem.

7.2.1 Towers of Hanoi

Similar to the blocks world, the towers of hanoi problem involves disks being stacked on top of each
other and moving those disks around, as shown in Figure 5. Initially there are d disks of different size
sitting on one of the three stacks. The disk below any disk must be larger than the former disk. Only
the uppermost disk of a stack can be moved on top of another stack. The planning goal is to transfer
all disks from one stack to another stack without violating any constraints.

Figure 5: An illustration of the towers of hanoi problem.

We implement this problem in YAGI and measure the runtime (tµ[ms] and tσ[ms]) and required number
of moves (aµ and aσ) for different numbers of disks. The source code is available in appendix A.3.
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d n tµ[ms] tσ[ms] aµ aσ succ[%] to[%]

YAGI (non-det., no plan.)
1 10000 0.05 0.1 0.36 0.58 22 0
2 10000 0.02 0.01 0.6 1.09 1 0
3 10000 0.02 0.01 0.58 1.14 < 1 0

YAGI (non-det., plan.)
1 1000 0.2 1.1 1 0 100 0
2 1000 1 4.7 3 0 100 0
3 100 102 85 7 0 100 0
≥ 4 - - - - - 0 100

YAGI (cond., plan.)
1 1000 0.1 0.01 1 0 100 0
2 1000 0.7 0.03 3 0 100 0
3 100 84 70 7 0 100 0
≥ 4 - - - - - 0 100

YAGI (cond., no plan.)
1 10000 0.04 0.02 1.44 0.89 100 0
2 10000 0.2 1.1 14.5 12.2 100 0
3 10000 1.4 10 98.7 90.4 100.0 0.0
4 1000 9.8 23 694 604 100.0 0.0
5 1000 59 75 4179 3946 100.0 0.0
6 100 350 318 24123 20256 100.0 0.0
7 20 1673 1864 115091 126793 95.0 5.0
8 20 5855 1835 406543 129651 65.0 35.0
9 20 8557 0 591045 0 5 95
≥ 10 20 - - - - 0 100

Table 11: Results for the towers of hanoi problem for varying number of disks d.

The results from Table 11 show that YAGI (non-det., no plan.) fails in most cases by attempting an
illegal move. The chance of success decreases drastically with more disks. Both YAGI (non-det., plan.)
and YAGI (cond., plan.) give the optimal solution each run, but surpass the timeout of 10 seconds with
more than 3 disks. YAGI (cond., no plan.) works like a monkey who iteratively makes random valid
moves until the goal is reached. The number of actions is far from optimal and is widely distributed, as
indicated by aσ. The runtime and number of moves increase more than exponentially until the program
almost surely runs into a timeout with 10 or more disks.

7.2.2 Delivery Robot

A packet delivery robot can navigate between nodes, with some of them being connected via an edge, as
illustrated in Figure 6. The nodes should represent houses, the edges streets. In the beginning p packets
are distributed across the houses and the robot must deliver each packet to its target destination. The
robot can carry at most two packets.

We implement 3 different strategies to fulfill all requests, as shown in the source code found in ap-
pendix A.4:

1. Similar to YAGI (cond., no plan.), the robot either picks a random request and loads the requested
packet or goes to a destination and unloads the packet. A path to a destination is found by simply
straying around. It is possible to have two packets loaded this way.

2. Requests are fulfilled iteratively. A random request is picked, the robot finds the packet, loads it,
goes to the requested location and unloads it. Paths are found through planning. The robot holds
at most one packet.
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Figure 6: The map used in our implementation. From the slides of [Steinbauer, 2017].

3. Similar to YAGI (non-det., plan.), the robot picks up a requested packet or takes a packet to its
destination. Everything is anticipated by planning.

We test our strategies by randomly distributing p packets across the map and by randomizing the packet
destinations.

p n tµ[ms] tσ[ms] aµ aσ to[%]

Strategy 1
1 250 0.2 0.2 36.9 35.7 0
2 250 0.3 0.2 78.9 54.3 0
3 250 0.4 0.2 111 57.9 0
4 250 0.6 0.3 155 73.8 0
5 250 0.7 0.2 201 79.8 0
6 250 0.8 0.2 225 80.3 0

Strategy 2
1 250 2.4 3.9 6.34 2.11 0
2 250 2.3 4.2 12.2 2.87 0
3 250 3.2 3.1 18.9 3.79 0
4 250 4.7 7.2 25 4.34 0
5 250 5.5 9.6 31.5 4.81 0
6 250 6.5 9.5 38.2 5.65 0

Strategy 3
1 250 1.5 2.5 6.052 1.95 0
2 250 9.6 9 10.948 2.26 0
3 250 73 93 14.628 2.21 0
4 250 859 327 18.236 2.25 0
5 20 - - - - 100
6 20 - - - - 100

Table 12: Results for all three packet delivery robot strategies.

The results in Table 12 show that Strategy 1 takes the least time to execute, with a linear increase in
time regarding p. The number of taken actions is widely scattered, as indicated by aσ. This is because
the pathfinding algorithm is purely randomized. Strategy 2 yields a shorter sequence of actions. Finding
a path through planning takes more time than straying around, but the increase in runtime is still linear
because of the serial execution of the requests. Strategy 3 consistently gives the shortest solutions,
because multiple packets can be loaded and the order of actions is well planned. The runtime however

57



grows exponentially and the program times out when handling more than 4 packets.
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7.3 Trials in Education

YAGI was successfully used by students in the course ”Classical Topics of Computer Science” at Graz
University of Technology in winter term 2018/19. The course covers a range of topics including Situation
Calculus and Golog. The 120 participants who worked in groups of 4 had to implement a planning
problem in YAGI, with the only functional requirement being that the program finds a valid solution.
A one hour introduction to YAGI along with a question hour the following week was held. Parts of
this thesis and a few example programs were available online. To solve the problem, an out-of-the-box
installation of YAGI along with a rudimentary framework and test script was provided. The test script
checks if the domain was implemented correctly and runs a few testcases and checks if the program
behaves as expected. The submissions were graded based on the number of private testcases a program
passes. Private testcases are unknown to the students and completely different from the public ones in
the framework, so students can’t hardcode action sequences.

Based on the given framework, the students had to implement a simplified item manufacturing process
inspired by the video game Minecraft, as described by [Eckstein and Steinbauer, 2018]. The agent, Steve,
can move between three appliances and can hold at most one item at a time. The chest can store an
arbitrary number of items and both the workbench and furnace can be used to craft new items from
existing ones. There are a number of recipes, which dictate the exact combination of items that must
be present and the result items. In addition to that, the furnace takes 10 time units to process an item.
With each action executed one time unit passes. The planning goal is to craft a number of desired items
given a certain amount of raw materials to start with. A key challenge is to make good use of the time
while the furnace is burning.

Out of the 28 groups that handed in a solution, 22 passed more than half of the private testcases. This
means that they had definitely managed to implement some planning logic to solve the given testcases. 7
groups could pass all of the private testcases. The students came up with a wide number of approaches to
solve the problem. Some implemented a purely deterministic program without planning that recursively
calculates an action sequence and executes it. Others used planning to formulate the problem in a more
abstract way. Groups with a deterministic approach had programs taking less than a second to execute,
but the computed action sequences were usually longer than those of programs with planning constructs.
This shows how the choice between determinism and planning results in a trade-off between speed and
efficiency.

Student feedback was widely positive, with some showing interest in the concept of YAGI and its ap-
plications. Two students developed a syntax highlighting scheme for YAGI. Some found the task to be
hard and others noted that it was relatively easy but they had to get used to the programming language.
Common criticisms were the lack of debugging tools during search, the necessity to explicitly cast integers
when assigning them to sets and the lack of functional fluents.
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8 Conclusion

Our goal was to redesign the Golog based programming language YAGI, so that the language becomes
more usable and performant.

We started by exploring underlying formal concepts such as Situation Calculus and Golog and by dis-
cussing existing Golog interpreters, especially IndiGolog and ConGolog. We examined the previous YAGI
implementation, which we call Legacy YAGI for clarification and pointed out its drawbacks, such as its
lack of proper data structures, limited syntax and poor performance.

Subsequently we outlined a basic architecture of the new YAGI ecosystem, where YAGI code is compiled
to a primitive opcode that is executed by a Java program. This design decision makes integration easier
and provides more scripting tools. Furthermore we proposed a more compact syntax with more syntactic
sugar and discussed the language specification in detail. We added support for new data types such as
ranged integers, user defined enums or booleans along with better control over the planning process.
A strict typechecker was also one of the new core features. Afterwards we showed how our revised
language conforms to Golog and Second Order Logic using the function Y agiEval and the predicates
Y agiFormula, Y agiTrans and Y agiF inal. We gave some insight in how our implementation works and
which hooks the backend provides to embed a YAGI program into an existing system.

After having developed a functioning implementation of YAGI, we compared its performance with Legacy
YAGI by measuring the runtime and success rate of two semantically identical programs in both lan-
guages. The results showed that YAGI vastly outperforms its predecessor. Moreover, we gave some more
example programs to demonstrate how different planning strategies have different properties regarding
runtime, efficiency and success rate. Finally, we discussed how YAGI had already been successfully used
by students in educational settings, which shows that our implementation is ready to be used by third
parties to solve practical planning problems.

There is still room for improvement however regarding the syntax and performance. A useful syntactic
feature could be functional fluents that operate like a map where the key is a tuple of values. This way
pick-statements wouldn’t be necessary anymore for retrieving values from a fluent. Recurring ranged
integer types could be abbreviated using macros. Another idea would be the introduction of try-else
statements, where the second action is only executed if the first one fails. The performance could be
increased by providing detection of recurring situations during search or by further improving the data
structures used for sets.

We conclude that we have improved YAGI sufficiently regarding usability and performance and that we
have thus achieved our goal.
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A Evaluation Programs

A.1 Elevator Controller

ignoreunused(park, main, S0)

# Is set for exactly one integer, namely the current floor
# the elevator is residing on.
fluent currFloor[int[0:127]]

# Set for all floors that the elevator should visit.
fluent requests[int[0:127]]

signal sigTurnoff(int $n);
signal sigOpen();
signal sigClose();
signal sigUp(int $n);
signal sigDown(int $n);

# Remove a request from the list
action turnoff(int[0:127] $n) {
poss(requests[$n])
do {
requests -= [$n];

}
signal sigTurnoff($n)

}

# Open the door
action open() {
signal sigOpen()

}

# Close the door
action close() {
signal sigClose()

}

# Move up. Can only move up if $n is bigger than
# the current floor.
action up(int[0:127] $n) {
poss(exists[$x] in currFloor such $x < $n)
do {
currFloor = [$n];

}
signal sigUp($n)

}

# Move down. Can only move down if $n is smaller than
# the current floor.
action down(int[0:127] $n) {
poss(exists[$x] in currFloor such $x > $n)
do {
currFloor = [$n];

}
signal sigDown($n)

}

# Move down to the ground floor. Why you ask? Let’s say a building is
# 4 stories tall, including the ground floor. What is the probability
# that the elevator is residing on the last floor? 1/4? No. 1/6! Cause
# people mostly move between the ground floor and the floor they live
# or work on. So half of the requests come from the ground floor. It
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# makes sense to automatically park the elevator there to save everyone
# some time. To find out if someone is an npc, simply ask them this
# riddle.
proc park() {
if(!currFloor[0]) {
down(0);

}
open();

}

proc serve(int[0:127] $n) {
# Either stay, go up or go down. The programmer shouldn’t really
# care what’s right, since that’s what non-determinism is for.
choose {
currFloor[$n];

} or {
up($n);

} or {
down($n);

}
turnoff($n);
open();
close();

}

proc serveConditional(int[0:127] $n) {
# Find out the current floor
pick[$x] in currFloor;
# Act accordingly
if($x < $n) {
up($n);

} else if($x > $n) {
down($n);

}
turnoff($n);
open();
close();

}

proc control() {
# Answer all requests
while(requests[_]) {
# The search tree branches here each time
pick [$n] in requests;
serve($n);

}
}

proc controlConditional() {
# Answer all requests iteratively in random order
while(requests[_]) {
pick [$n] in requests;
serveConditional($n);

}
}

proc main(boolean $planningEnabled, boolean $conditional) {
if($conditional) {
if($planningEnabled) {
search controlConditional();

} else {
controlConditional();

}
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} else {
if($planningEnabled) {
search control();

} else {
control();

}
}

}

situation S0 {
# The elevator starts on the ground floor
currFloor = [0];
# Requests are initialized dynamically by the Q3 script

}

A.2 Blocks World

ignoreunused(main, S0)

# If block 4 is on top of block 2, then stacks[4, 2] is set
fluent stacks[int[0:15], int[0:15]]

# Is true for all blocks that are on top of a stack
fluent clear[int[0:15]]

# Signal declarations for API hooks
signal sigStack(int[0:15] $top, int[0:15] $bot);
signal sigTable(int[0:15] $top);

action stackBlocks(int[0:15] $top, int[0:15] $bot) {
# Can only move a block on top of another if both are on top of a stack
poss($top != $bot && clear[$top] && clear[$bot])
do {
if(stacks[$top, _]) {
pick [$top, $bot0] in stacks;
stacks -= [$top, $bot0];
clear += [$bot0];

}
stacks += [$top, $bot];
clear -= [$bot];

}
signal sigStack($top, $bot)

}

action putOnTable(int[0:15] $top) {
poss {
# Block must be on top
clear[$top];
# Block must not be on the table
pick [$top, $bot] in stacks;

}
do {
clear += [$bot];
stacks -= [$top, $bot];

}
signal sigTable($top)

}

proc doMove() {
# Pick a moveable block and either put it on the table
# or on top of another block.
pick [$top] in clear;
choose {
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putOnTable($top);
} or {
pick[$bot] in clear;
stackBlocks($top, $bot);

}
}

proc control() {
# Non-deterministically try moving around until
# block 0 is on top of block 1.
while(!stacks[0, 1]) {
doMove();

}
}

proc doMoveConditional() {
# Same as do move, but actions aren’t executed if their
# preconditions are set to fail.
choose {
pick [$top] in clear;
if(stacks[$top, _]) {
putOnTable($top);

}
} or {
pick [$top] in clear;
pick [$bot] in clear;
if($top != $bot) {
stackBlocks($top, $bot);

}
}

}

proc controlConditional() {
while(!stacks[0, 1]) {
doMoveConditional();

}
}

proc main(boolean $planningEnabled, boolean $conditional) {
if($conditional) {
if($planningEnabled) {
search controlConditional();

} else {
controlConditional();

}
} else {
if($planningEnabled) {
search control();

} else {
control();

}
}

}

situation S0 {
# Initialized dynamically by the Q3 script

}

A.3 Towers of Hanoi

ignoreunused(main, init, S0)

# Enum for all three towers
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enum Tower {
A, B, C,

}

fact totalDisks[int[1:16]] {
# Initialized by Q3 script

}

situation S0 {
# Initialized dynamically by init()

}

# Stores which disk is on top of which tower
fluent top[Tower, int[1:16]]

# Stores which disk is on top of which disk
# If disk 3 is on disk 5, then on[3, 5] holds
fluent on[int[1:16], int[1:16]]

# Stores how many disks are stacked on one tower,
# used for checking if a request has been fulfilled
fluent count[Tower, int[0:16]]

signal moveDisk(Tower $from, Tower $to, int[1:16] $disk)

# Move a disk from one tower to another
action move(Tower $from, Tower $to) {
poss {
$toBelow;
$fromBelow;
pick [$from, $fromTop] in top;
if(top[$to, _]) {
pick [$to, $toBelow] in top;
$fromTop < $toBelow;

} else {
$toBelow = 0;

}
if(on[$fromTop, _]) {
pick [$fromTop, $fromBelow] in on;

} else {
$fromBelow = 0;

}
pick [$to, $toCount] in count;
pick [$from, $fromCount] in count;

}
do {
top -= [$from, $fromTop];
top += [$to, $fromTop];
if($fromBelow != 0) {
$fromBelow = int[1:16] $fromBelow;
top += [$from, $fromBelow];
on -= [$fromTop, $fromBelow];

}
if($toBelow != 0) {
$toBelow = int[1:16] $toBelow;
top -= [$to, $toBelow];
on += [$fromTop, $toBelow];

}
count -= {[$to, _], [$from, _]};
count += {[$to, int[0:16] ($toCount + 1)], [$from, int[0:16] ($fromCount - 1)]};

}
signal moveDisk($from, $to, $fromTop)

}
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# Called by the Q3 script
action init() {
poss {
# Get the total number of disks
pick [$disks] in totalDisks;

}
do {
# Stack all disks in correct order on tower A
top += [Tower.A, 1];
count = {[_, 0]};
count -= [Tower.A, _];
count += [Tower.A, $disks];
$i = 1;
while ($i < $disks) {
on += [int[1:16] $i, int[1:16] ($i + 1)];
$i = $i + 1;

}
}

}

proc control(int[1:16] $diskCount) {
# All disks must be on Tower.C
while (!count[Tower.C, $diskCount]) {
# Condition $from != $to for performance gains
pick [$from, $to] in [Tower, Tower] such $from != $to;
move($from, $to);

}
}

# Randomly move disks around
proc controlConditional(int[1:16] $diskCount) {
while (!count[Tower.C, $diskCount]) {
# Check precondition of move() in this pick statement
pick [$from, $to] in [Tower, Tower] such
$from != $to &&
(
exists [$from, $disk1] in top such
top[$to, _] -> (exists [$to, $disk2] in top such $disk1 < $disk2)

);
move($from, $to);

}
}

proc main(boolean $planningEnabled, boolean $conditional) {
pick [$disks] in totalDisks;
if($conditional) {
if($planningEnabled) {
search controlConditional($disks);

} else {
controlConditional($disks);

}
} else {
if($planningEnabled) {
search control($disks);

} else {
control($disks);

}
}

}

A.4 Packet Delivery Robot
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ignoreunused(main, S0)

enum Loc {
A, B, C, D, E, F, G, H, I,

}

enum Packet {
P1, P2, P3, P4, P5, P6, P7, P8, P9, P10,

}

# Specifying all traversible edges on the map
fact edge[Loc, Loc] {
[Loc.A, Loc.B],
[Loc.A, Loc.D],
[Loc.B, Loc.C],
[Loc.B, Loc.D],
[Loc.C, Loc.E],
[Loc.D, Loc.E],
[Loc.D, Loc.F],
[Loc.F, Loc.H],
[Loc.G, Loc.H],
[Loc.H, Loc.I],

}

# The location the robot is at
fluent robotAt[Loc]

# The current location of each packet
fluent packetAt[Packet, Loc]

# All packets the robot is currently holding
fluent holding[Packet]

# The number of packets the robot is holding
fluent holdingCount[int[0:2]]

# Where packets should be brought to
fluent requests[Packet, Loc]

signal sigMove(Loc $to)
signal sigPickup(Packet $packet)
signal sigDrop(Packet $packet)

action move(Loc $to) {
# Can only move to a neighbouring node
poss (exists [$from] in robotAt such edge[$from, $to] || edge[$to, $from])
do {
robotAt = [$to];

}
signal sigMove($to)

}

action pickup(Packet $packet) {
poss {
# Robot must hold less than 2 packets and must be at the
# packet’s location.
pick [$count] in holdingCount;
$count < 2;
exists [$loc] in robotAt such packetAt[$packet, $loc];

}
do {
packetAt -= [$packet, _];
holding += [$packet];
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holdingCount = [int[0:2] ($count + 1)];
}
signal sigPickup($packet)

}

action drop(Packet $packet) {
poss {
# Packet must be held
pick [$count] in holdingCount;
pick [$loc] in robotAt;
holding[$packet];

}
do {
packetAt += [$packet, $loc];
holding -= [$packet];
holdingCount = [int[0:2] ($count - 1)];

}
signal sigDrop($packet)

}

# Called when a request has been fulfilled
action removeRequest(Packet $packet) {
do {
requests -= [$packet, _];

}
}

# Finds a path to any given location. Behaves differently depending on the
# current semantics. In online mode the robot strays around until it has
# stumbled upon the goal. In offline mode the shortest path is found.
proc findPath(Loc $to) {
pick [$current] in robotAt;
while($current != $to) {
pick [$next] in [Loc] such edge[$current, $next] || edge[$next, $current];
move($next);
$current = $next;

}
}

proc control() {
while(requests[_, _]) {
choose {
# Go to a packet that must be delivered and pick it up
pick [$packet, $src] in packetAt such requests[$packet, _];
search findPath($src);
pickup($packet);

} or {
# Go to the destination of a held packet and drop it
pick [$packet, $dst] in requests such holding[$packet];
search findPath($dst);
drop($packet);
removeRequest($packet);

}
}

}

proc controlConditional1() {
# Same as control(), but with precondition checks
while(requests[_, _]) {
choose {
if(!holdingCount[2] && (exists [$packet, _] in packetAt such requests[$packet,

_])) {
pick [$packet, $src] in packetAt such requests[$packet, _];
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findPath($src);
pickup($packet);

}
} or {
if(exists [$packet, _] in requests such holding[$packet]) {
pick [$packet, $dst] in requests such holding[$packet];
findPath($dst);
drop($packet);
removeRequest($packet);

}
}

}
}

# Answer requests iteratively
proc controlConditional2() {
while(requests[_, _]) {
# Go to a packet, pick it up, go to its destination and drop it
pick [$packet, $dst] in requests;
pick [$packet, $src] in packetAt;
search findPath($src);
pickup($packet);
search findPath($dst);
drop($packet);
removeRequest($packet);

}
}

proc main(boolean $planningEnabled, boolean $conditional) {
if($conditional) {
if($planningEnabled) {
# Strategy 1
controlConditional1();

} else {
# Strategy 2
controlConditional2();

}
} else {
if($planningEnabled) {
# Strategy 3
search control();

} else {
# Fails most of the time
control();

}
}

}

situation S0 {
# Robot is located at A in the beginning and holds no packets
robotAt = {[Loc.A]};
holding = {};
holdingCount = {[0]};

}
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